Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
28 result(s) for "Baalbaki, Rima"
Sort by:
Effects of User Puff Topography, Device Voltage, and Liquid Nicotine Concentration on Electronic Cigarette Nicotine Yield
Some electronic cigarette (ECIG) users attain tobacco cigarette-like plasma nicotine concentrations while others do not. Understanding the factors that influence ECIG aerosol nicotine delivery is relevant to regulation, including product labeling and abuse liability. These factors may include user puff topography, ECIG liquid composition, and ECIG design features. This study addresses how these factors can influence ECIG nicotine yield. Aerosols were machine generated with 1 type of ECIG cartridge (V4L CoolCart) using 5 distinct puff profiles representing a tobacco cigarette smoker (2-s puff duration, 33-ml/s puff velocity), a slow average ECIG user (4 s, 17 ml/s), a fast average user (4 s, 33 ml/s), a slow extreme user (8 s, 17 ml/s), and a fast extreme user (8 s, 33 ml/s). Output voltage (3.3-5.2 V or 3.0-7.5 W) and e-liquid nicotine concentration (18-36 mg/ml labeled concentration) were varied. A theoretical model was also developed to simulate the ECIG aerosol production process and to provide insight into the empirical observations. Nicotine yields from 15 puffs varied by more than 50-fold across conditions. Experienced ECIG user profiles (longer puffs) resulted in higher nicotine yields relative to the tobacco smoker (shorter puffs). Puff velocity had no effect on nicotine yield. Higher nicotine concentration and higher voltages resulted in higher nicotine yields. These results were predicted well by the theoretical model (R (2) = 0.99). Depending on puff conditions and product features, 15 puffs from an ECIG can provide far less or far more nicotine than a single tobacco cigarette. ECIG emissions can be predicted using physical principles, with knowledge of puff topography and a few ECIG device design parameters.
Formation and growth of sub-3-nm aerosol particles in experimental chambers
Atmospheric new particle formation (NPF), which is observed in many environments globally, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, which affect both the climate and human health. To better understand the mechanisms behind NPF, chamber experiments can be used to simulate this phenomenon under well-controlled conditions. Recent advancements in instrumentation have made it possible to directly detect the first steps of NPF of molecular clusters (~1–2 nm in diameter) and to calculate quantities such as the formation and growth rates of these clusters. Whereas previous studies reported particle formation rates as the flux of particles across a specified particle diameter or calculated them from measurements of larger particle sizes, this protocol outlines methods to directly quantify particle dynamics for cluster sizes. Here, we describe the instrumentation and analysis methods needed to quantify particle dynamics during NPF of sub-3-nm aerosol particles in chamber experiments. The methods described in this protocol can be used to make results from different chamber experiments comparable. The experimental setup, collection and post-processing of the data, and thus completion of this protocol, take from months up to years, depending on the chamber facility, experimental plan and level of expertise. Use of this protocol requires engineering capabilities and expertise in data analysis. This protocol describes the instrumentation and analysis methods needed to quantify particle dynamics during new particle formation of sub-3-nm aerosol particles in chamber experiments.
Heatwave reveals potential for enhanced aerosol formation in Siberian boreal forest
Siberia is covered by 6 million km 2 of forest, which moderates climate as a carbon sink and a source of aerosol particles causing negative radiative effect. Aerosol particles in boreal forests frequently form via gas-to-particle conversion, known as new particle formation (NPF). Compared to boreal sites at similar latitudes, NPF was reported to occur less often in the Siberian forest. However, factors controlling NPF in Siberia remain unknown. Our results suggest that the combination of biogenic and anthropogenic contributions caused unexpectedly high monthly NPF frequency (50%) at the observatory Fonovaya in the West Siberian taiga during the Siberian 2020 heatwave. High frequency was due to early spring photosynthetic recovery, which boosted biogenic emissions into polluted air masses carrying SO 2 . After mid-April, high temperatures and cleaner air masses led to less frequent (15%) and less intense NPF despite the increased emissions of natural organic vapors and ammonia. Furthermore, the contrast between the two spring periods was seen in cluster composition, particle-forming vapors (two times difference in sulfuric acid concentration), particle formation ( J 3 , 2.2 and 0.4 cm −3 s −1 ) and growth rates (GR 2−3 , 1.7 and 0.6 nm h −1 ). Given the strong warming trend, our results suggest that within 25‒30 years, the monthly NPF frequency during early spring in the West Siberian taiga can reach 40%–60%, as in the European boreal sites.
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
Aerosol particles have an important role in Earth's radiation balance and climate, both directly and indirectly through aerosol–cloud interactions. Most aerosol particles in the atmosphere are weakly charged, affecting both their collision rates with ions and neutral molecules, as well as the rates by which they are scavenged by other aerosol particles and cloud droplets. The rate coefficients between ions and aerosol particles are important since they determine the growth rates and lifetimes of ions and charged aerosol particles, and so they may influence cloud microphysics, dynamics, and aerosol processing. However, despite their importance, very few experimental measurements exist of charged aerosol collision rates under atmospheric conditions, where galactic cosmic rays in the lower troposphere give rise to ion pair concentrations of around 1000 cm−3. Here we present measurements in the CERN CLOUD chamber of the rate coefficients between ions and small (<10 nm) aerosol particles containing up to 9 elementary charges, e. We find the rate coefficient of a singly charged ion with an oppositely charged particle increases from 2.0 (0.4–4.4) × 10−6 cm3 s−1 to 30.6 (24.9–45.1) × 10−6 cm3 s−1 for particles with charges of 1 to 9 e, respectively, where the parentheses indicate the ±1σ uncertainty interval. Our measurements are compatible with theoretical predictions and show excellent agreement with the model of Gatti and Kortshagen (2008).
Nicotine and Carbonyl Emissions From Popular Electronic Cigarette Products
Abstract Introduction Available in hundreds of device designs and thousands of flavors, electronic cigarette (ECIG) may have differing toxicant emission characteristics. This study assesses nicotine and carbonyl yields in the most popular brands in the U.S. market. These products included disposable, prefilled cartridge, and tank-based ECIGs. Methods Twenty-seven ECIG products of 10 brands were procured and their power outputs were measured. The e-liquids were characterized for pH, nicotine concentration, propylene glycol/vegetable glycerin (PG/VG) ratio, and water content. Aerosols were generated using a puffing machine and nicotine and carbonyls were, respectively, quantified using gas chromatograph and high-performance liquid chromatography. A multiregression model was used to interpret the data. Results Nicotine yields varied from 0.27 to 2.91 mg/15 puffs, a range corresponding to the nicotine yield of less than 1 to more than 3 combustible cigarettes. Nicotine yield was highly correlated with ECIG type and brand, liquid nicotine concentration, and PG/VG ratio, and to a lower significance with electrical power, but not with pH and water content. Carbonyls, including the carcinogen formaldehyde, were detected in all ECIG aerosols, with total carbonyl concentrations ranging from 3.72 to 48.85 µg/15 puffs. Unlike nicotine, carbonyl concentrations were mainly correlated with power. Conclusion In 15 puffs, some ECIG devices emit nicotine quantities that exceed those of tobacco cigarettes. Nicotine emissions vary widely across products but carbonyl emissions showed little variations. In spite of that ECIG users are exposed to toxicologically significant levels of carbonyl compounds, especially formaldehyde. Regression analysis showed the importance of design and e-liquid characteristics as determinants of nicotine and carbonyl emissions. Implications Periodic surveying of characteristics of ECIG products available in the marketplace is valuable for understanding population-wide changes in ECIG use patterns over time.
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog 1 , 2 , but how it occurs in cities is often puzzling 3 . If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms 4 , 5 . Measurements in the CLOUD chamber at CERN show that the rapid condensation of ammonia and nitric acid vapours could be important for the formation and survival of new particles in wintertime urban conditions, contributing to urban smog.
Detection of 5-hydroxymethylfurfural and furfural in the aerosol of electronic cigarettes
SignificanceThe wide availability of sweet flavours has been hypothesised as a factor in the popularity of electronic cigarette (ECIG), especially among youth. Saccharides, which are commonly used to impart a sweet flavour to ECIG liquids, thermally degrade to produce toxic compounds, like aldehydes and furans. This study investigates the formation of furanic compounds in aerosols when ECIG liquid solutions of varying sweetener concentrations are vaped under different power and puff duration.MethodsLiquids are prepared by mixing aqueous sucrose, glucose or sorbitol solutions to a 70/30 propylene glycol/glycerin solution. Aerosols are generated and trapped on filter pads using a commercially available ECIG operating at 4.3 and 10.8 W and 4 and 8 s puff duration. Extraction, elimination of matrix interference and quantification are achieved using novel solid phase extraction and gas chromatography tandem mass spectrometry methods (GC-MS).ResultsWell-resolved GC peaks of 5-hydroxymethylfurfural (HMF) and furfural (FA) are detected. Both HMF and FA are quantified in the aerosols of sweet-flavoured e-liquids under various vaping conditions. Levels of furan emissions are significantly correlated with electric power and sweetener concentration and not with puff duration. Unlike saccharides, the formation of HMF and FA from a sugar alcohol is negligible.ConclusionsThe addition of sweeteners to ECIG liquids exposes ECIG user to furans, a toxic class of compounds. Under certain conditions, the per-puff yield of HMF and FA in ECIG emissions is comparable to values reported for combustible cigarettes.
Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN) 1 – 4 . However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region 5 , 6 . Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO 3 –H 2 SO 4 –NH 3 nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere. By performing experiments under upper tropospheric conditions, nitric acid, sulfuric acid and ammonia can form particles synergistically, at rates orders of magnitude faster than any two of the three components.
Sources and sinks driving sulfuric acid concentrations in contrasting environments: implications on proxy calculations
Sulfuric acid has been shown to be a key driver for new particle formation and subsequent growth in various environments, mainly due to its low volatility. However, direct measurements of gas-phase sulfuric acid are oftentimes not available, and the current sulfuric acid proxies cannot predict, for example, its nighttime concentrations or result in significant discrepancies with measured values. Here, we define the sources and sinks of sulfuric acid in different environments and derive a new physical proxy for sulfuric acid to be utilized in locations and during periods when it is not measured. We used H2SO4 measurements from four different locations: Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment and heavily polluted megacity, respectively. The new proxy takes into account the formation of sulfuric acid from SO2 via OH oxidation and other oxidation pathways, specifically via stabilized Criegee intermediates. The sulfuric acid sinks included in the proxy are its condensation sink (CS) and atmospheric clustering starting from H2SO4 dimer formation. Indeed, we found that the observed sulfuric acid concentration can be explained by the proposed sources and sinks with similar coefficients in the four contrasting environments where we have tested it. Thus, the new proxy is a more flexible and an important improvement over previous proxies. Following the recommendations in this paper, a proxy for a specific location can be derived.
A proxy for atmospheric daytime gaseous sulfuric acid concentration in urban Beijing
Gaseous sulfuric acid (H2SO4) is known as one of the key precursors for atmospheric new particle formation (NPF) processes, but its measurement remains challenging. Therefore, a proxy method that is able to derive gaseous sulfuric acid concentrations from parameters that can be measured relatively easily and accurately is highly desirable for the atmospheric chemistry community. Although such methods are available for clean atmospheric environments, a proxy that works well in a polluted atmosphere, such as that found in Chinese megacities, is yet to be developed. In this study, the gaseous sulfuric acid concentration was measured in February–March 2018, in urban Beijing using a nitrate based – long time-of-flight chemical ionization mass spectrometer (LToF-CIMS). A number of atmospheric parameters were recorded concurrently including the ultraviolet radiation B (UVB) intensity, the concentrations of O3, NOx (sum of NO and NO2), SO2, and HONO, and aerosol particle number size distributions. A proxy for atmospheric daytime gaseous sulfuric acid concentration was derived via a statistical analysis method using the UVB intensity, [SO2], the condensation sink (CS), [O3], and [HONO] (or [NOx]) as the predictor variables, where square brackets denote the concentrations of the corresponding species. In this proxy method, we considered the formation of gaseous sulfuric acid from reactions of SO2 and OH radicals during the daytime, and the loss of gaseous sulfuric acid due to its condensation onto the preexisting particles. In addition, we explored the formation of OH radicals from the conventional gas-phase photochemistry using O3 as a proxy and from the photolysis of HONO using HONO (and subsequently NOx) as a proxy. Our results showed that the UVB intensity and [SO2] are dominant factors in the production of gaseous sulfuric acid, and that the simplest proxy could be constructed with the UVB intensity and [SO2] alone. When the OH radical production from both homogenously and heterogeneously formed precursors were considered, the relative errors were reduced by up to 20 %.