Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
211
result(s) for
"Batley, Jacqueline"
Sort by:
Genotyping‐by‐sequencing approaches to characterize crop genomes: choosing the right tool for the right application
by
Scheben, Armin
,
Edwards, David
,
Batley, Jacqueline
in
Agricultural economics
,
Bioinformatics
,
Breeding
2017
Summary
In the last decade, the revolution in sequencing technologies has deeply impacted crop genotyping practice. New methods allowing rapid, high‐throughput genotyping of entire crop populations have proliferated and opened the door to wider use of molecular tools in plant breeding. These new genotyping‐by‐sequencing (GBS) methods include over a dozen reduced‐representation sequencing (RRS) approaches and at least four whole‐genome resequencing (WGR) approaches. The diversity of methods available, each often producing different types of data at different cost, can make selection of the best‐suited method seem a daunting task. We review the most common genotyping methods used today and compare their suitability for linkage mapping, genomewide association studies (GWAS), marker‐assisted and genomic selection and genome assembly and improvement in crops with various genome sizes and complexity. Furthermore, we give an outline of bioinformatics tools for analysis of genotyping data. WGR is well suited to genotyping biparental cross populations with complex, small‐ to moderate‐sized genomes and provides the lowest cost per marker data point. RRS approaches differ in their suitability for various tasks, but demonstrate similar costs per marker data point. These approaches are generally better suited for de novo applications and more cost‐effective when genotyping populations with large genomes or high heterozygosity. We expect that although RRS approaches will remain the most cost‐effective for some time, WGR will become more widespread for crop genotyping as sequencing costs continue to decrease.
Journal Article
Towards CRISPR/Cas crops – bringing together genomics and genome editing
by
Holger Puchta
,
David Edwards
,
Armin Scheben
in
Abiotic stress
,
Agricultural production
,
Alleles
2017
With the rapid increase in the global population and the impact of climate change on agriculture, there is a need for crops with higher yields and greater tolerance to abiotic stress. However, traditional crop improvement via genetic recombination or random mutagenesis is a laborious process and cannot keep pace with increasing crop demand. Genome editing technologies such as clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/Cas) allow targeted modification of almost any crop genome sequence to generate novel variation and accelerate breeding efforts. We expect a gradual shift in crop improvement away from traditional breeding towards cycles of targeted genome editing. Crop improvement using genome editing is not constrained by limited existing variation or the requirement to select alleles over multiple breeding generations. However, current applications of crop genome editing are limited by the lack of complete reference genomes, the sparse knowledge of potential modification targets, and the unclear legal status of edited crops. We argue that overcoming technical and social barriers to the application of genome editing will allow this technology to produce a new generation of high-yielding, climate ready crops.
Journal Article
Towards plant pangenomics
by
Golicz, Agnieszka A
,
Edwards, David
,
Batley, Jacqueline
in
Annotations
,
Arabidopsis - genetics
,
Biodiversity
2016
As an increasing number of genome sequences become available for a wide range of species, there is a growing understanding that the genome of a single individual is insufficient to represent the gene diversity within a whole species. Many studies examine the sequence diversity within genes, and this allelic variation is an important source of phenotypic variation which can be selected for by man or nature. However, the significant gene presence/absence variation that has been observed within species and the impact of this variation on traits is only now being studied in detail. The sum of the genes for a species is termed the pangenome, and the determination and characterization of the pangenome is a requirement to understand variation within a species. In this review, we explore the current progress in pangenomics as well as methods and approaches for the characterization of pangenomes for a wide range of plant species.
Journal Article
Current status of structural variation studies in plants
2021
Summary
Structural variations (SVs) including gene presence/absence variations and copy number variations are a common feature of genomes in plants and, together with single nucleotide polymorphisms and epigenetic differences, are responsible for the heritable phenotypic diversity observed within and between species. Understanding the contribution of SVs to plant phenotypic variation is important for plant breeders to assist in producing improved varieties. The low resolution of early genetic technologies and inefficient methods have previously limited our understanding of SVs in plants. However, with the rapid expansion in genomic technologies, it is possible to assess SVs with an ever‐greater resolution and accuracy. Here, we review the current status of SV studies in plants, examine the roles that SVs play in phenotypic traits, compare current technologies and assess future challenges for SV studies.
Journal Article
Current Status and Challenges in Identifying Disease Resistance Genes in Brassica napus
by
Barbetti, Martin J.
,
Neik, Ting Xiang
,
Batley, Jacqueline
in
Airborne microorganisms
,
Blackleg
,
Brassica
2017
is an economically important crop across different continents including temperate and subtropical regions in Europe, Canada, South Asia, China and Australia. Its widespread cultivation also brings setbacks as it plays host to fungal, oomycete and chytrid pathogens that can lead to serious yield loss. For sustainable crop production, identification of resistance (
) genes in
has become of critical importance. In this review, we discuss four key pathogens affecting
crops: Clubroot (
, Blackleg (
and
, Sclerotinia Stem Rot (
), and Downy Mildew (
. We first review current studies covering prevalence of these pathogens on
crops and highlight the
genes and QTL that have been identified from
species against these pathogens. Insights into the relationships between the pathogen and its
host, the unique host resistance mechanisms and how these affect resistance outcomes is also presented. We discuss challenges in identification and deployment of
genes in
in relation to highly specific genetic interactions between host subpopulations and pathogen pathotypes and emphasize the need for common or shared techniques and research materials or tighter collaboration between researchers to reconcile the inconsistencies in the research outcomes. Using current genomics tools, we provide examples of how characterization and cloning of
genes in
can be carried out more effectively. Lastly, we put forward strategies to breed resistant cultivars through introgressions supported by genomic approaches and suggest prospects that can be implemented in the future for a better, pathogen-resistant
.
Journal Article
Characterization of disease resistance genes in the Brassica napus pangenome reveals significant structural variation
by
Tirnaz, Soodeh
,
Dolatabadian, Aria
,
Hurgobin, Bhavna
in
Binding sites
,
biotechnology
,
Blackleg
2020
Summary
Methods based on single nucleotide polymorphism (SNP), copy number variation (CNV) and presence/absence variation (PAV) discovery provide a valuable resource to study gene structure and evolution. However, as a result of these structural variations, a single reference genome is unable to cover the entire gene content of a species. Therefore, pangenomics analysis is needed to ensure that the genomic diversity within a species is fully represented. Brassica napus is one of the most important oilseed crops in the world and exhibits variability in its resistance genes across different cultivars. Here, we characterized resistance gene distribution across 50 B. napus lines. We identified a total of 1749 resistance gene analogs (RGAs), of which 996 are core and 753 are variable, 368 of which are not present in the reference genome (cv. Darmor‐bzh). In addition, a total of 15 318 SNPs were predicted within 1030 of the RGAs. The results showed that core R‐genes harbour more SNPs than variable genes. More nucleotide binding site‐leucine‐rich repeat (NBS‐LRR) genes were located in clusters than as singletons, with variable genes more likely to be found in clusters. We identified 106 RGA candidates linked to blackleg resistance quantitative trait locus (QTL). This study provides a better understanding of resistance genes to target for genomics‐based improvement and improved disease resistance.
Journal Article
Variation in abundance of predicted resistance genes in the Brassica oleracea pangenome
by
Tirnaz, Soodeh
,
Chan, Chon‐Kit Kenneth
,
Golicz, Agnieszka A.
in
Airborne microorganisms
,
Ascomycota - physiology
,
biotechnology
2019
Summary
Brassica oleracea is an important agricultural species encompassing many vegetable crops including cabbage, cauliflower, broccoli and kale; however, it can be susceptible to a variety of fungal diseases such as clubroot, blackleg, leaf spot and downy mildew. Resistance to these diseases is meditated by specific disease resistance genes analogs (RGAs) which are differently distributed across B. oleracea lines. The sequenced reference cultivar does not contain all B. oleracea genes due to gene presence/absence variation between individuals, which makes it necessary to search for RGA candidates in the B. oleracea pangenome. Here we present a comparative analysis of RGA candidates in the pangenome of B. oleracea. We show that the presence of RGA candidates differs between lines and suggests that in B. oleracea, SNPs and presence/absence variation drive RGA diversity using separate mechanisms. We identified 59 RGA candidates linked to Sclerotinia, clubroot, and Fusarium wilt resistance QTL, and these findings have implications for crop breeding in B. oleracea, which may also be applicable in other crops species.
Journal Article
The pangenome of an agronomically important crop plant Brassica oleracea
by
Edger, Patrick P.
,
Teakle, Graham R.
,
Paterson, Andrew H.
in
631/208/212/748
,
631/208/2491
,
631/208/726/649/2157
2016
There is an increasing awareness that as a result of structural variation, a reference sequence representing a genome of a single individual is unable to capture all of the gene repertoire found in the species. A large number of genes affected by presence/absence and copy number variation suggest that it may contribute to phenotypic and agronomic trait diversity. Here we show by analysis of the
Brassica oleracea
pangenome that nearly 20% of genes are affected by presence/absence variation. Several genes displaying presence/absence variation are annotated with functions related to major agronomic traits, including disease resistance, flowering time, glucosinolate metabolism and vitamin biosynthesis.
Brassica oleracea
is a single species that includes diverse crops such as cabbage, broccoli and Brussels sprouts. Here, the authors identify genes not captured in existing
B. oleracea
reference genomes by the assembly of a pangenome and show variations in gene content that may be related to important agronomic traits
Journal Article
Integration of genome-wide association studies, metabolomics, and transcriptomics reveals phenolic acid- and flavonoid-associated genes and their regulatory elements under drought stress in rapeseed flowers
2024
Biochemical and metabolic processes help plants tolerate the adverse effects of drought. In plants accumulating bioactive compounds, understanding the genetic control of the biosynthesis of biochemical pathways helps the discovery of candidate gene (CG)-metabolite relationships.
The metabolic profile of flowers in 119 rapeseed (
) accessions was assessed over two irrigation treatments, one a well-watered (WW) condition and the other a drought stress (DS) regime. We integrated information gained from 52,157 single-nucleotide polymorphism (SNP) markers, metabolites, and transcriptomes to identify linked SNPs and CGs responsible for the genetic control of flower phenolic compounds and regulatory elements.
In a genome-wide association study (GWAS), of the SNPs tested, 29,310 SNPs were qualified to assess the population structure and linkage disequilibrium (LD), of which several SNPs for radical scavenging activity (RSA) and total flavanol content (TFLC) were common between the two irrigation conditions and pleiotropic SNPs were found for chlorogenic and coumaric acids content. The principal component analysis (PCA) and stepwise regression showed that chlorogenic acid and epicatechin in WW and myricetin in DS conditions were the most important components for RSA. The hierarchical cluster analysis (HCA) showed that vanillic acid, myricetin, gallic acid, and catechin were closely associated in both irrigation conditions. Analysis of GWAS showed that 60 CGs were identified, of which 18 were involved in stress-induced pathways, phenylpropanoid pathway, and flavonoid modifications. Of the CGs,
,
,
,
,
, and
contributed to flavonoid biosynthetic pathways. The results of RNA sequencing (RNA-seq) revealed that the transcript levels of
,
, and
known as early flavonoid biosynthesis-related genes and
,
, and
related to the later stages were increased during drought conditions. The transcription factors (TFs)
and
related to flavonoids and phenolic acids were upregulated under drought conditions.
These findings expand our knowledge on the response mechanisms to DS, particularly regarding the regulation of key phenolic biosynthetic genes in rapeseed. Our data also provided specific linked SNPs for marker-assisted selection (MAS) programs and CGs as resources toward realizing metabolomics-associated breeding of rapeseed.
Journal Article
The role of pangenomics in orphan crop improvement
2025
Global food security depends heavily on a few staple crops, while orphan crops, despite being less studied, offer the potential benefits of environmental adaptation and enhanced nutritional traits, especially in a changing climate. Major crops have benefited from genomics-based breeding, initially using single genomes and later pangenomes. Recent advances in DNA sequencing have enabled pangenome construction for several orphan crops, offering a more comprehensive understanding of genetic diversity. Orphan crop research has now entered the pangenomics era and applying these pangenomes with advanced selection methods and genome editing technologies can transform these neglected species into crops of broader agricultural significance.
A single reference genome is not enough to harness the full genetic variation of a species. Here, the authors review pangenomics principles, construction and applications for orphan crop improvement, and discuss the possible ways to support pangenomics-driven molecular breeding.
Journal Article