Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
35
result(s) for
"Brøns, Charlotte"
Sort by:
A Genome-Wide mQTL Analysis in Human Adipose Tissue Identifies Genetic Variants Associated with DNA Methylation, Gene Expression and Metabolic Traits
by
Jansson, Per-Anders
,
Jørgensen, Sine W.
,
Gillberg, Linn
in
1st-degree relatives
,
Adipose tissue
,
Adipose Tissue - metabolism
2016
Little is known about the extent to which interactions between genetics and epigenetics may affect the risk of complex metabolic diseases and/or their intermediary phenotypes. We performed a genome-wide DNA methylation quantitative trait locus (mQTL) analysis in human adipose tissue of 119 men, where 592,794 single nucleotide polymorphisms (SNPs) were related to DNA methylation of 477,891 CpG sites, covering 99% of RefSeq genes. SNPs in significant mQTLs were further related to gene expression in adipose tissue and obesity related traits. We found 101,911 SNP-CpG pairs (mQTLs) in cis and 5,342 SNP-CpG pairs in trans showing significant associations between genotype and DNA methylation in adipose tissue after correction for multiple testing, where cis is defined as distance less than 500 kb between a SNP and CpG site. These mQTLs include reported obesity, lipid and type 2 diabetes loci, e.g. ADCY3/POMC, APOA5, CETP, FADS2, GCKR, SORT1 and LEPR. Significant mQTLs were overrepresented in intergenic regions meanwhile underrepresented in promoter regions and CpG islands. We further identified 635 SNPs in significant cis-mQTLs associated with expression of 86 genes in adipose tissue including CHRNA5, G6PC2, GPX7, RPL27A, THNSL2 and ZFP57. SNPs in significant mQTLs were also associated with body mass index (BMI), lipid traits and glucose and insulin levels in our study cohort and public available consortia data. Importantly, the Causal Inference Test (CIT) demonstrates how genetic variants mediate their effects on metabolic traits (e.g. BMI, cholesterol, high-density lipoprotein (HDL), hemoglobin A1c (HbA1c) and homeostatic model assessment of insulin resistance (HOMA-IR)) via altered DNA methylation in human adipose tissue. This study identifies genome-wide interactions between genetic and epigenetic variation in both cis and trans positions influencing gene expression in adipose tissue and in vivo (dys)metabolic traits associated with the development of obesity and diabetes.
Journal Article
VPS39-deficiency observed in type 2 diabetes impairs muscle stem cell differentiation via altered autophagy and epigenetics
2021
Insulin resistance and lower muscle quality (strength divided by mass) are hallmarks of type 2 diabetes (T2D). Here, we explore whether alterations in muscle stem cells (myoblasts) from individuals with T2D contribute to these phenotypes. We identify VPS39 as an important regulator of myoblast differentiation and muscle glucose uptake, and
VPS39
is downregulated in myoblasts and myotubes from individuals with T2D. We discover a pathway connecting VPS39-deficiency in human myoblasts to impaired autophagy, abnormal epigenetic reprogramming, dysregulation of myogenic regulators, and perturbed differentiation. VPS39 knockdown in human myoblasts has profound effects on autophagic flux, insulin signaling, epigenetic enzymes, DNA methylation and expression of myogenic regulators, and gene sets related to the cell cycle, muscle structure and apoptosis. These data mimic what is observed in myoblasts from individuals with T2D. Furthermore, the muscle of
Vps39
+/−
mice display reduced glucose uptake and altered expression of genes regulating autophagy, epigenetic programming, and myogenesis. Overall, VPS39-deficiency contributes to impaired muscle differentiation and reduced glucose uptake. VPS39 thereby offers a therapeutic target for T2D.
Insulin resistance and lower muscle strength in relation to mass are hallmarks of type 2 diabetes. Here, the authors report alterations in muscle stem cells from individuals with type 2 diabetes that may contribute to these phenotypes through VPS39 mediated effects on autophagy and epigenetics.
Journal Article
Adipose tissue transcriptomics and epigenomics in low birthweight men and controls: role of high-fat overfeeding
by
Gillberg, Linn
,
Iggman, David
,
Nilsson, Emma
in
Adaptor Proteins, Vesicular Transport - genetics
,
Adipose Tissue - metabolism
,
Adult
2016
Aims/hypothesis
Individuals who had a low birthweight (LBW) are at an increased risk of insulin resistance and type 2 diabetes when exposed to high-fat overfeeding (HFO). We studied genome-wide mRNA expression and DNA methylation in subcutaneous adipose tissue (SAT) after 5 days of HFO and after a control diet in 40 young men, of whom 16 had LBW.
Methods
mRNA expression was analysed using Affymetrix Human Gene 1.0 ST arrays and DNA methylation using Illumina 450K BeadChip arrays.
Results
We found differential DNA methylation at 53 sites in SAT from LBW vs normal birthweight (NBW) men (false discovery rate <5%), including sites in the
FADS2
and
CPLX1
genes previously associated with type 2 diabetes. When we used reference-free cell mixture adjustments to potentially adjust for cell composition, 4,323 sites had differential methylation in LBW vs NBW men. However, no differences in SAT gene expression levels were identified between LBW and NBW men. In the combined group of all 40 participants, 3,276 genes (16.5%) were differentially expressed in SAT after HFO (false discovery rate <5%) and there was no difference between LBW men and controls. The most strongly upregulated genes were
ELOVL6
,
FADS2
and
NNAT
; in contrast,
INSR
,
IRS2
and the
SLC27A2
fatty acid transporter showed decreased expression after HFO. Interestingly,
SLC27A2
expression correlated negatively with diabetes- and obesity-related traits in a replication cohort of 142 individuals. DNA methylation at 652 CpG sites (including in
CDK5
,
IGFBP5
and
SLC2A4
) was altered in SAT after overfeeding in this and in another cohort.
Conclusions/interpretation
Young men who had a LBW exhibit epigenetic alterations in their adipose tissue that potentially influence insulin resistance and risk of type 2 diabetes. Short-term overfeeding influences gene transcription and, to some extent, DNA methylation in adipose tissue; there was no major difference in this response between LBW and control participants.
Journal Article
Type 2 diabetes classification: a data-driven cluster study of the Danish Centre for Strategic Research in Type 2 Diabetes (DD2) cohort
by
Jessen, Niels
,
Hojlund, Kurt
,
García-Calzón, Sonia
in
Biomarkers
,
Body mass index
,
Classification
2022
IntroductionA Swedish data-driven cluster study identified four distinct type 2 diabetes (T2D) clusters, based on age at diagnosis, body mass index (BMI), hemoglobin A1c (HbA1c) level, and homeostatic model assessment 2 (HOMA2) estimates of insulin resistance and beta-cell function. A Danish study proposed three T2D phenotypes (insulinopenic, hyperinsulinemic, and classical) based on HOMA2 measures only. We examined these two new T2D classifications using the Danish Centre for Strategic Research in Type 2 Diabetes cohort.Research design and methodsIn 3529 individuals, we first performed a k-means cluster analysis with a forced k-value of four to replicate the Swedish clusters: severe insulin deficient (SIDD), severe insulin resistant (SIRD), mild age-related (MARD), and mild obesity-related (MOD) diabetes. Next, we did an analysis open to alternative k-values (ie, data determined the optimal number of clusters). Finally, we compared the data-driven clusters with the three Danish phenotypes.ResultsCompared with the Swedish findings, the replicated Danish SIDD cluster included patients with lower mean HbA1c (86 mmol/mol vs 101 mmol/mol), and the Danish MOD cluster patients were less obese (mean BMI 32 kg/m2 vs 36 kg/m2). Our data-driven alternative k-value analysis suggested the optimal number of T2D clusters in our data to be three, rather than four. When comparing the four replicated Swedish clusters with the three proposed Danish phenotypes, 81%, 79%, and 69% of the SIDD, MOD, and MARD patients, respectively, fitted the classical T2D phenotype, whereas 70% of SIRD patients fitted the hyperinsulinemic phenotype. Among the three alternative data-driven clusters, 60% of patients in the most insulin-resistant cluster constituted 76% of patients with a hyperinsulinemic phenotype.ConclusionDifferent HOMA2-based approaches did not classify patients with T2D in a consistent manner. The T2D classes characterized by high insulin resistance/hyperinsulinemia appeared most distinct.
Journal Article
Link Between GIP and Osteopontin in Adipose Tissue and Insulin Resistance
by
Omar, Bilal
,
Kuusisto, Johanna
,
Gomez, Maria F.
in
Adipose tissue
,
Adipose Tissue - drug effects
,
Adipose Tissue - metabolism
2013
Low-grade inflammation in obesity is associated with accumulation of the macrophage-derived cytokine osteopontin (OPN) in adipose tissue and induction of local as well as systemic insulin resistance. Since glucose-dependent insulinotropic polypeptide (GIP) is a strong stimulator of adipogenesis and may play a role in the development of obesity, we explored whether GIP directly would stimulate OPN expression in adipose tissue and thereby induce insulin resistance. GIP stimulated OPN protein expression in a dose-dependent fashion in rat primary adipocytes. The level of OPN mRNA was higher in adipose tissue of obese individuals (0.13 ± 0.04 vs. 0.04 ± 0.01, P < 0.05) and correlated inversely with measures of insulin sensitivity (r = −0.24, P = 0.001). A common variant of the GIP receptor (GIPR) (rs10423928) gene was associated with a lower amount of the exon 9–containing isoform required for transmembrane activity. Carriers of the A allele with a reduced receptor function showed lower adipose tissue OPN mRNA levels and better insulin sensitivity. Together, these data suggest a role for GIP not only as an incretin hormone but also as a trigger of inflammation and insulin resistance in adipose tissue. Carriers of the GIPR rs10423928 A allele showed protective properties via reduced GIP effects. Identification of this unprecedented link between GIP and OPN in adipose tissue might open new avenues for therapeutic interventions.
Journal Article
Protocol for the combined cardiometabolic deep phenotyping and registry-based 20-year follow-up study of the Inter99 cohort
by
Lundbergh, Bjørn
,
Larsen, Michael
,
Kofoed, Klaus Fuglsang
in
Anthropometry
,
Birth weight
,
CARDIOLOGY
2024
IntroductionThe population-based Inter99 cohort has contributed extensively to our understanding of effects of a systematic screening and lifestyle intervention, as well as the multifactorial aetiology of type 2 diabetes (T2D) and cardiovascular disease. To understand causes, trajectories and patterns of early and overt cardiometabolic disease manifestations, we will perform a combined clinical deep phenotyping and registry follow-up study of the now 50–80 years old Inter99 participants.Methods and analysisThe Inter99 cohort comprises individuals aged 30–60 years, who lived in a representative geographical area of greater Copenhagen, Denmark, in 1999. Age-stratified and sex-stratified random subgroups were invited to participate in either a lifestyle intervention (N=13 016) or questionnaires (N=5264), while the rest served as a reference population (N=43 021). Of the 13 016 individuals assigned to the lifestyle intervention group, 6784 (52%) accepted participation in a baseline health examination in 1999, including screening for cardiovascular risk factors and prediabetic conditions. In total, 6004 eligible participants, who participated in the baseline examination, will be invited to participate in the deep phenotyping 20-year follow-up clinical examination including measurements of anthropometry, blood pressure, arterial stiffness, cardiometabolic biomarkers, coronary artery calcification, heart rate variability, heart rhythm, liver stiffness, fundus characteristics, muscle strength and mass, as well as health and lifestyle questionnaires. In a subsample, 10-day monitoring of diet, physical activity and continuous glucose measurements will be performed. Fasting blood, urine and faecal samples to be stored in a biobank. The established database will form the basis of multiple analyses. A main purpose is to investigate whether low birth weight independent of genetics, lifestyle and glucose tolerance predicts later common T2D cardiometabolic comorbidities.Ethics and disseminationThe study was approved by the Medical Ethics Committee, Capital Region, Denmark (H-20076231) and by the Danish Data Protection Agency through the Capital Region of Denmark’s registration system (P-2020-1074). Informed consent will be obtained before examinations. Findings will be disseminated in peer-reviewed journals, at conferences and via presentations to stakeholders, including patients and public health policymakers.Trial registration numberNCT05166447.
Journal Article
Chronic Non-bacterial Osteomyelitis: A Review
by
Buch, Kristian
,
Schwarz, Peter
,
Anne Cathrine Baun Thuesen
in
Age groups
,
Anti-inflammatory agents
,
Asymptomatic
2019
Chronic non-bacterial osteomyelitis (CNO) is a rare auto-inflammatory bone disorder, with a prevalence of around one in a million patients. In the more severe form, it is referred to as chronic recurrent multifocal osteomyelitis (CRMO). We present the current knowledge on epidemiology, pathophysiology as well as diagnostic options and treatment regimens. CNO/CRMO most commonly affects children and lesions are often seen in the metaphyseal plates of the long bones, but cases have been described affecting all age groups as well as lesions in almost every bone. It is, therefore, a disease that clinicians can encounter in many different settings. Diagnosis is mainly a matter of exclusion from differential diagnoses such as bacterial osteomyelitis and cancer. Magnetic resonance imaging is the best radiological method for diagnosis coupled with a low-grade inflammation and a history of recurring episodes. Treatment is based on case reports and consists of alleviating symptoms with non-steroidal anti-inflammatory drugs since the disease is often self-limiting. Recently, more active treatments using either bisphosphonates or biological treatment are becoming more common, to prevent long term bone damage. In general, due to its rarity, much remains unclear regarding CNO/CRMO. We review the known literature on CNO/CRMO and propose areas of interest as well as possible ways to make current diagnostic criteria more detailed. We also find unifocal cases of the jaw to be a possible sub-type that may need its own set of criteria.
Journal Article
The Effects of a Lifestyle Intervention Supported by the InterWalk Smartphone App on Increasing Physical Activity Among Persons With Type 2 Diabetes: Parallel-Group, Randomized Trial
by
Christensen, Robin
,
Nielsen, Rasmus Oestergaard
,
Vaag, Allan Arthur
in
Diabetes
,
Exercise
,
Goal setting
2022
Background: Effective and sustainable implementation of physical activity (PA) in type 2 diabetes (T2D) health care has in general not been successful. Efficacious and contemporary approaches to support PA adherence and adoption are required. Objective: The primary objective of this study was to investigate the effectiveness of including an app-based (InterWalk) approach in municipality-based rehabilitation to increase moderate-and-vigorous PA (MVPA) across 52 weeks compared with standard care among individuals with T2D. Methods: The study was designed as a parallel-group, randomized trial with 52 weeks’ intervention and subsequent follow-up for effectiveness (52 weeks from baseline). Participants were recruited between January 2015 and December 2016 and randomly allocated (2:1) into 12 weeks of (1) standard care + InterWalk app–based interval walking training (IWT; IWT group; n=140), or (2) standard care + the standard exercise program (StC group; n=74). Following 12 weeks, the IWT group was encouraged to maintain InterWalk app–based IWT (3 times per week for 30-60 minutes) and the StC group was encouraged to maintain exercise without structured support. Moreover, half of the IWT group (IWTsupport group, n=54) received additional motivational support following the 12-week program until 52-week follow-up. The primary outcome was change in objectively measured MVPA time (minutes/day) from baseline to 52-week follow-up. Key secondary outcomes included changes in self-rated physical and mental health–related quality of life (HRQoL), physical fitness, weight, and waist circumference. Results: Participants had a mean age of 59.6 (SD 10.6) years and 128/214 (59.8%) were men. No changes in MVPA time were observed from baseline to 52-week follow-up in the StC and IWT groups (least squares means [95% CI] 0.6 [–4.6 to 5.8] and –0.2 [–3.8 to 3.3], respectively) and no differences were observed between the groups (mean difference [95% CI] –0.8 [–8.1 to 6.4] minutes/day; P=.82). Physical HRQoL increased by a mean of 4.3 (95% CI 1.8 to 6.9) 12-item Short-Form Health Survey (SF-12) points more in the IWT group compared with the StC group (Benjamini-Hochberg adjusted P=.007) and waist circumference apparently decreased a mean of –2.3 (95% CI –4.1 to –0.4) cm more in the IWT group compared with the StC group but with a Benjamini-Hochberg adjusted P=.06. No between-group differences were observed among the remaining key secondary outcomes. Conclusions: Among individuals with T2D referred to municipality-based lifestyle programs, randomization to InterWalk app–based IWT did not increase objectively measured MVPA time over 52 weeks compared with standard health care, although apparent benefits were observed for physical HRQoL. Trial Registration: ClinicalTrials.gov NCT02341690; https://clinicaltrials.gov/ct2/show/NCT02341690
Journal Article
Gene Expression in Skeletal Muscle Biopsies from People with Type 2 Diabetes and Relatives: Differential Regulation of Insulin Signaling Pathways
2009
Gene expression alterations have previously been associated with type 2 diabetes, however whether these changes are primary causes or secondary effects of type 2 diabetes is not known. As healthy first degree relatives of people with type 2 diabetes have an increased risk of developing type 2 diabetes, they provide a good model in the search for primary causes of the disease.
We determined gene expression profiles in skeletal muscle biopsies from Caucasian males with type 2 diabetes, healthy first degree relatives, and healthy controls. Gene expression was measured using Affymetrix Human Genome U133 Plus 2.0 Arrays covering the entire human genome. These arrays have not previously been used for this type of study. We show for the first time that genes involved in insulin signaling are significantly upregulated in first degree relatives and significantly downregulated in people with type 2 diabetes. On the individual gene level, 11 genes showed altered expression levels in first degree relatives compared to controls, among others KIF1B and GDF8 (myostatin). LDHB was found to have a decreased expression in both groups compared to controls.
We hypothesize that increased expression of insulin signaling molecules in first degree relatives of people with type 2 diabetes, work in concert with increased levels of insulin as a compensatory mechanism, counter-acting otherwise reduced insulin signaling activity, protecting these individuals from severe insulin resistance. This compensation is lost in people with type 2 diabetes where expression of insulin signaling molecules is reduced.
Journal Article
Pleiotropic Effects of GIP on Islet Function Involve Osteopontin
by
Kuusisto, Johanna
,
Gomez, Maria F.
,
Eliasson, Lena
in
Alleles
,
Apoptosis
,
Biological and medical sciences
2011
The incretin hormone GIP (glucose-dependent insulinotropic polypeptide) promotes pancreatic β-cell function by potentiating insulin secretion and β-cell proliferation. Recently, a combined analysis of several genome-wide association studies (Meta-analysis of Glucose and Insulin-Related Traits Consortium [MAGIC]) showed association to postprandial insulin at the GIP receptor (GIPR) locus. Here we explored mechanisms that could explain the protective effects of GIP on islet function.
Associations of GIPR rs10423928 with metabolic and anthropometric phenotypes in both nondiabetic (N = 53,730) and type 2 diabetic individuals (N = 2,731) were explored by combining data from 11 studies. Insulin secretion was measured both in vivo in nondiabetic subjects and in vitro in islets from cadaver donors. Insulin secretion was also measured in response to exogenous GIP. The in vitro measurements included protein and gene expression as well as measurements of β-cell viability and proliferation.
The A allele of GIPR rs10423928 was associated with impaired glucose- and GIP-stimulated insulin secretion and a decrease in BMI, lean body mass, and waist circumference. The decrease in BMI almost completely neutralized the effect of impaired insulin secretion on risk of type 2 diabetes. Expression of GIPR mRNA was decreased in human islets from carriers of the A allele or patients with type 2 diabetes. GIP stimulated osteopontin (OPN) mRNA and protein expression. OPN expression was lower in carriers of the A allele. Both GIP and OPN prevented cytokine-induced reduction in cell viability (apoptosis). In addition, OPN stimulated cell proliferation in insulin-secreting cells.
These findings support β-cell proliferative and antiapoptotic roles for GIP in addition to its action as an incretin hormone. Identification of a link between GIP and OPN may shed new light on the role of GIP in preservation of functional β-cell mass in humans.
Journal Article