Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
1,274
result(s) for
"Brown, Jared"
Sort by:
The Massive omnibus
\"Accompanied by a former mercenary, an idealistic and defensive American, a Russian mobster, and a mysterious woman named Mary, Captain Callum Israel and his crew come face to face with pirates, thugs, assassins, and the dangers of the ocean.\"-- Provided by publisher.
Silver Nanoparticle Protein Corona Composition in Cell Culture Media
by
Lai, Xianyin
,
Shannahan, Jonathan H.
,
Witzmann, Frank A.
in
Aliphatic compounds
,
Animals
,
Apolipoproteins
2013
The potential applications of nanomaterials as drug delivery systems and in other products continue to expand. Upon introduction into physiological environments and driven by energetics, nanomaterials readily associate proteins forming a protein corona (PC) on their surface. This PC influences the nanomaterial's surface characteristics and may impact their interaction with cells. To determine the biological impact of nanomaterial exposure as well as nanotherapeutic applications, it is necessary to understand PC formation. Utilizing a label-free mass spectrometry-based proteomics approach, we examined the composition of the PC for a set of four silver nanoparticles (AgNPs) including citrate-stabilized and polyvinlypyrrolidone-stabilized (PVP) colloidal silver (20 or 110 nm diameter). To simulate cell culture conditions, AgNPs were incubated for 1 h in Dulbecco's Modified Eagle Medium supplemented with 10% fetal bovine serum, washed, coronal proteins solubilized, and proteins identified and quantified by label-free LC-MS/MS. To determine which attributes influence PC formation, the AgNPs were characterized in both water and cell culture media with 10% FBS. All AgNPs associated a common subset of 11 proteins including albumin, apolipoproteins, keratins, and other serum proteins. 110 nm citrate- and PVP-stabilized AgNPs were found to bind the greatest number of proteins (79 and 85 respectively) compared to 20 nm citrate- and PVP-stabilized AgNPs (45 and 48 respectively), suggesting a difference in PC formation based on surface curvature. While no relationships were found for other protein parameters (isoelectric point or aliphatic index), the PC on 20 nm AgNPs (PVP and citrate) consisted of more hydrophobic proteins compared to 110 nm AgNPs implying that this class of proteins are more receptive to curvature-induced folding and crowding in exchange for an increased hydration in the aqueous environment. These observations demonstrate the significance of electrostatic and hydrophobic interactions in the formation of the PC which may have broad biological and toxicological implications.
Journal Article
Silver Nanoparticle-Directed Mast Cell Degranulation Is Mediated through Calcium and PI3K Signaling Independent of the High Affinity IgE Receptor
by
Alsaleh, Nasser B.
,
Persaud, Indushekhar
,
Brown, Jared M.
in
1-Phosphatidylinositol 3-kinase
,
Activation
,
Adaptive immunity
2016
Engineered nanomaterial (ENM)-mediated toxicity often involves triggering immune responses. Mast cells can regulate both innate and adaptive immune responses and are key effectors in allergic diseases and inflammation. Silver nanoparticles (AgNPs) are one of the most prevalent nanomaterials used in consumer products due to their antimicrobial properties. We have previously shown that AgNPs induce mast cell degranulation that was dependent on nanoparticle physicochemical properties. Furthermore, we identified a role for scavenger receptor B1 (SR-B1) in AgNP-mediated mast cell degranulation. However, it is completely unknown how SR-B1 mediates mast cell degranulation and the intracellular signaling pathways involved. In the current study, we hypothesized that SR-B1 interaction with AgNPs directs mast cell degranulation through activation of signal transduction pathways that culminate in an increase in intracellular calcium signal leading to mast cell degranulation. For these studies, we utilized bone marrow-derived mast cells (BMMC) isolated from C57Bl/6 mice and RBL-2H3 cells (rat basophilic leukemia cell line). Our data support our hypothesis and show that AgNP-directed mast cell degranulation involves activation of PI3K, PLCγ and an increase in intracellular calcium levels. Moreover, we found that influx of extracellular calcium is required for the cells to degranulate in response to AgNP exposure and is mediated at least partially via the CRAC channels. Taken together, our results provide new insights into AgNP-induced mast cell activation that are key for designing novel ENMs that are devoid of immune system activation.
Journal Article
Engineered Nanomaterials and Type I Allergic Hypersensitivity Reactions
by
Alsaleh, Nasser B.
,
Brown, Jared M.
in
Allergens
,
Allergens - adverse effects
,
Allergens - immunology
2020
Type I allergic hypersensitivity disorders (atopy) including asthma, atopic dermatitis, allergic rhinitis, and food allergy are on the rise in developed and developing countries. Engineered nanomaterials (ENMs) span a large spectrum of material compositions including carbonic, metals, polymers, lipid-based, proteins, and peptides and are being utilized in a wide range of industries including healthcare and pharmaceuticals, electronics, construction, and food industry, and yet, regulations for the use of ENMs in consumer products are largely lacking. Prior evidence has demonstrated the potential of ENMs to induce and/or aggravate type I allergic hypersensitivity responses. Furthermore, previous studies have shown that ENMs could directly interact with and activate key T-helper 2 (Th2) effector cell types (such as mast cells) and the complement system, which could result in pseudoallergic (non-IgE-mediated) hypersensitivity reactions. Nevertheless, the underlying molecular mechanisms of ENM-mediated induction and/or exacerbation of type I immune responses are poorly understood. In this review, we first highlight key examples of studies that have demonstrated inherent immunomodulatory properties of ENMs in the context of type I allergic hypersensitivity reactions, and most importantly, we attempt to put together the potential molecular mechanisms that could drive ENM-mediated stimulation and/or aggravation of type I allergic hypersensitivity responses.
Journal Article
The dependence of particle size on cell toxicity for modern mining dust
2023
Progressive massive pulmonary fibrosis among coal miners has unexpectedly increased. It would likely due to the greater generation of smaller rock and coal particles produced by powerful equipment used in modern mines. There is limited understanding of the relationship between micro- or nanoparticles with pulmonary toxicity. This study aims to determine whether the size and chemical characteristics of typical coal-mining dust contribute to cellular toxicity. Size range, surface features, morphology, and elemental composition of coal and rock dust from modern mines were characterized. Human macrophages and bronchial tracheal epithelial cells were exposed to mining dust of three sub- micrometer and micrometer size ranges at varying concentrations, then assessed for cell viability and inflammatory cytokine expression. Coal had smaller hydrodynamic size (180–3000 nm) compared to rock (495–2160 nm) in their separated size fractions, more hydrophobicity, less surface charge, and consisted of more known toxic trace elements (Si, Pt, Fe, Al, Co). Larger particle size had a negative association with in-vitro toxicity in macrophages (
p
< 0.05). Fine particle fraction, approximately 200 nm for coal and 500 nm for rock particles, explicitly induced stronger inflammatory reactions than their coarser counterparts. Future work will study additional toxicity endpoints to further elucidate the molecular mechanism causing pulmonary toxicity and determine a dose–response curve.
Journal Article
Bone marrow stromal cells use TGF-β to suppress allergic responses in a mouse model of ragweed-induced asthma
by
Brown, Jared M
,
Bundoc, Victor G
,
Keane-Myers, Andrea
in
Allergies
,
Ambrosia - adverse effects
,
Ambrosia - immunology
2010
Bone marrow stromal cells [BMSCs; also known as mesenchymal stem cells (MSCs)] effectively suppress inflammatory responses in acute graft-versus-host disease in humans and in a number of disease models in mice. Many of the studies concluded that BMSC-driven immunomodulation is mediated by the suppression of proinflammatory Th1 responses while rebalancing the Th1/Th2 ratio toward Th2. In this study, using a ragweed induced mouse asthma model, we studied if BMSCs could be beneficial in an allergic, Th2-dominant environment. When BMSCs were injected i.v. at the time of the antigen challenge, they protected the animals from the majority of asthma-specific pathological changes, including inhibition of eosinophil infiltration and excess mucus production in the lung, decreased levels of Th2 cytokines (IL-4, IL-5, and IL-13) in bronchial lavage, and lowered serum levels of Th2 immunoglobulins (IgG1 and IgE). To explore the mechanism of the effect we used BMSCs isolated from a variety of knockout mice, performed in vivo blocking of cytokines and studied the effect of asthmatic serum and bronchoalveolar lavage from ragweed challenged animals on the BMSCs in vitro. Our results suggest that IL-4 and/or IL-13 activate the STAT6 pathway in the BMSCs resulting in an increase of their TGF-β production, which seems to mediate the beneficial effect, either alone, or together with regulatory T cells, some of which might be recruited by the BMSCs. These data suggest that, in addition to focusing on graft-versus-host disease and autoimmune diseases, allergic conditions--specifically therapy resistant asthma--might also be a likely target of the recently discovered cellular therapy approach using BMSCs.
Journal Article
Genomic and transcriptomic comparison of allergen and silver nanoparticle-induced mast cell degranulation reveals novel non-immunoglobulin E mediated mechanisms
by
Persaud, Indushekhar
,
Mendoza, Ryan P.
,
Johnson, Monica
in
Activation
,
Allergens
,
Allergens - pharmacology
2018
Mast cells represent a crucial cell type in host defense; however, maladaptive responses are contributing factors in the pathogenesis of allergic diseases. Previous work in our laboratory has shown that exposure to silver nanoparticles (AgNPs) results in mast cell degranulation via a non-immunoglobulin E (IgE) mechanism. In this study, we utilized a systems biology approach to identify novel genetic factors playing a role in AgNP-induced mast cell degranulation compared to the classical activation by antigen-mediated FcεRI crosslinking. Mast cell degranulation was assessed in bone marrow-derived mast cells isolated from 23 strains of mice following exposure to AgNPs or FcεRI crosslinking with dinitrophenyl (DNP). Utilizing strain-dependent mast cell degranulation, an association mapping study identified 3 chromosomal regions that were significantly associated with mast cell degranulation by AgNP and one non-overlapping region associated with DNP-mediated degranulation. Two of the AgNP-associated regions correspond to genes previously reported to be associated with allergic disorders (Trac2 on chromosome 1 and Traf6 on chromosome 2) and an uncharacterized gene identified on chromosome 1 (Fam126b). In conjunction, RNA-sequencing performed on mast cells from the high and low responder strains revealed 3754 and 34 differentially expressed genes that were unique to DNP and AgNP exposures, respectively. Select candidate genes include Ptger4, a gene encoding a G-protein coupled receptor in addition to a multifunctional adaptor protein, Txnip, that may be driving mast cell degranulation by AgNP. Taken together, we identified novel genes that have not been previously shown to play a role in nanoparticle-mediated mast cell activation. With further functional evaluation in the future, these genes may be potential therapeutic targets in the treatment of non-IgE mediated mast cell-linked disorders.
Journal Article
CB2 improves power of cell detection in droplet-based single-cell RNA sequencing data
by
Ni, Zijian
,
Chen, Shuyang
,
Kendziorski, Christina
in
Animal Genetics and Genomics
,
barcoding
,
Bioinformatics
2020
An important challenge in pre-processing data from droplet-based single-cell RNA sequencing protocols is distinguishing barcodes associated with real cells from those binding background reads. Existing methods test barcodes individually and consequently do not leverage the strong cell-to-cell correlation present in most datasets. To improve cell detection, we introduce CB2, a cluster-based approach for distinguishing real cells from background barcodes. As demonstrated in simulated and case study datasets, CB2 has increased power for identifying real cells which allows for the identification of novel subpopulations and improves the precision of downstream analyses.
Journal Article
A Single-Step Digestion for the Quantification and Characterization of Trace Particulate Silica Content in Biological Matrices Using Single Particle Inductively Coupled Plasma-Mass Spectrometry
2023
The increased use of amorphous silica nanoparticles (SiNPs) in food products, materials science, cosmetics, and pharmaceuticals has raised questions about potential hazards in the environment and in human health. Although SiNPs are generally thought to be benign, recent studies have demonstrated toxicity in different cell and animal models. Despite their ubiquitous use, SiNPs are rarely analyzed quantitatively. Often, the methods used to analyze silicon and SiNPs are difficult, costly, require the use of dangerous reagents, and are prone to interferences. Additionally, characterization of SiNPs in complex matrices requires extensive sample preparation. To address this, we propose a single-step digestion method for the determination of trace SiNP content in biological matrices. For conventional inductively coupled plasma-mass spectrometry (ICP-MS) analysis, biological samples are often digested with concentrated HNO
3
. We found that with conventional ICP-MS, lower limits of detection (LLOD) of silicon are too high for trace analysis. However, we found that SiNPs are stable at a strong acidic pH; thus, concentrated HNO
3
could be used to digest biological samples leaving SiNPs intact. Then, by analysis with single particle ICP-MS, we found that the smallest SiNP that could be read was 185 nm in size. The concentration for the LLOD was found to be 0.032 ppb with interday variability in sizing and concentration at 2.5% and 6.8% respectively. Utilizing this method, SiNPs were accurately sized and counted in cell pellets and media. Our proposed method can be used to accurately quantify and characterize SiNPs (or agglomerated SiNPs) larger than the derived LLOD in a variety of biological matrices and will assist in determining relationships between exposures of SiNPs and toxicity in humans and the environment.
Journal Article
A hyperspectral and toxicological analysis of protein corona impact on silver nanoparticle properties, intracellular modifications, and macrophage activation
2015
The inevitable adsorption of biomolecules on nanomaterials results in the formation of a protein corona (PC), which modifies the nanoparticle (NP)-cell interface resulting in modified uptake, activity, clearance, and toxicity. While the physicochemical properties of the NP govern the composition of PC, the formation of PC in turn alters the characteristics of the NP by imparting a new unique \"biological\" identity. To assess how the PC influences AgNP properties, intracellular modifications, and cellular responses, we utilized a combination of hyperspectral and toxicological analyses. AgNPs were coated with a complex PC (multiple proteins, eg, 10% fetal bovine serum) or a simple PC (single protein, eg, bovine serum albumin [BSA]) and evaluated by hyperspectral and dynamic light scattering for modifications in AgNP properties. Mouse macrophages were exposed to AgNPs with PCs and examined for differences in uptake, cytotoxicity, and cell activation. Hyperspectral imaging revealed intracellular modifications to AgNPs that were found to spectrally match alterations in AgNPs following incubation in lysosomal fluid. Addition of the PC influenced AgNP uptake and cytotoxicity; however, hydrodynamic size and surface charge did not contribute to these responses. Assessments of all endpoints demonstrated differences between complex and BSA PC, suggesting that these responses are not purely driven by the primary protein component of the complex PC (ie, BSA). Alterations in cellular-NP uptake/interactions may be driven through cell surface receptor recognition of protein constituents that make up the PC rather than the physicochemical differences in AgNPs.
Journal Article