Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Buzzá, Hilde H."
Sort by:
Carbon-Based Materials in Photodynamic and Photothermal Therapies Applied to Tumor Destruction
Within phototherapy, a grand challenge in clinical cancer treatments is to develop a simple, cost-effective, and biocompatible approach to treat this disease using ultra-low doses of light. Carbon-based materials (CBM), such as graphene oxide (GO), reduced GO (r-GO), graphene quantum dots (GQDs), and carbon dots (C-DOTs), are rapidly emerging as a new class of therapeutic materials against cancer. This review summarizes the progress made in recent years regarding the applications of CBM in photodynamic (PDT) and photothermal (PTT) therapies for tumor destruction. The current understanding of the performance of modified CBM, hybrids and composites, is also addressed. This approach seeks to achieve an enhanced antitumor action by improving and modulating the properties of CBM to treat various types of cancer. Metal oxides, organic molecules, biopolymers, therapeutic drugs, among others, have been combined with CBM to treat cancer by PDT, PTT, or synergistic therapies.
Structural Effect of Rhenium‐ and Iridium‐Complex Liposome Composition on Their Selectivity for Antimicrobial Photodynamic Therapy
Antimicrobial photodynamic therapy (aPDT) is an alternative to antibiotics that has potential for the treatment of chronic skin wounds, but requires improved, highly selective photosensitizer systems. Rhenium (Re)‐complex‐ and iridium (Ir)‐complex‐based phospholipid conjugates, as PDT‐functional building blocks for liposomes, are presented, and varying structural components and proportion of compounds are explored, including adjusting the cholesterol and polyethylene glycol (PEG)‐lipid contents, incorporating ethylenediaminetetraacetic acid (EDTA)‐lipid, and introducing the cationic lipid 1,2‐dioleoyl‐3‐trimethylammonium propane (DOTAP) to enhance their efficacy and selectivity in aPDT. Ir/Re‐liposomes have nanostructurally enhanced photoactivity compared to monomeric Ir/Re‐lipids. Ir‐liposomes exhibit stronger light absorption and higher emission generation (>threefold) than Re‐liposomes, resulting in superior efficacy against Staphylococcus aureus while maintaining better tolerability toward host cells. Formulations with higher cholesterol (40 mol%) and PEG‐lipid (5%) content demonstrate increased potency against S. aureus. The incorporation of EDTA‐lipid significantly enhances aPDT efficacy but also increases toxicity toward host cells. Incorporation of DOTAP alters the nanoparticles’ surface charge, potentially improving their interaction with bacterial walls, but negatively impacts their stability, leading to aggregation of the nanoparticles. Ir‐HC demonstrates ideal characteristics (effectiveness, selectivity, and stability) for aPDT under the tested conditions, indicating the importance of the structural design of Re‐ and Ir‐complex liposomes for their selectivity in aPDT. Innovative rhenium‐complex and iridium‐complex amphiphilic lipids are presented as building blocks for eight different liposome formulations for antimicrobial photodynamic therapy against wound infections. Following a comprehensive characterization of the nanostructures and their optical properties, their effect on bacteria and host cells is tested in vitro and the impact of structural changes in the efficacy and selectivity is discussed.
Graphene Oxide Theranostic Effect: Conjugation of Photothermal and Photodynamic Therapies Based on an in vivo Demonstration
Cancer is the second leading cause of death globally and is responsible, where about 1 in 6 deaths in the world. Therefore, there is a need to develop effective antitumor agents that are targeted only to the specific site of the tumor to improve the efficiency of cancer diagnosis and treatment and, consequently, limit the unwanted systemic side effects currently obtained by the use of chemotherapeutic agents. In this context, due to its unique physical and chemical properties of graphene oxide (GO), it has attracted interest in biomedicine for cancer therapy. In this study, we report the in vivo application of nanocomposites based on Graphene Oxide (nc-GO) with surface modified with PEG-folic acid, Rhodamine B and Indocyanine Green. In addition to displaying red fluorescence spectra Rhodamine B as the fluorescent label), in vivo experiments were performed using nc-GO to apply Photodynamic Therapy (PDT) and Photothermal Therapy (PTT) in the treatment of Ehrlich tumors in mice using NIR light (808 nm 1.8 W/cm2). This study based on fluorescence images was performed in the tumor in order to obtain the highest concentration of nc-GO in the tumor as a function of time (time after intraperitoneal injection). The time obtained was used for the efficient treatment of the tumor by PDT/PTT. The current study shows an example of successful using nc-GO nanocomposites as a theranostic nanomedicine to perform simultaneously in vivo fluorescence diagnostic as well as combined PDT-PTT effects for cancer treatments.