Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
99
result(s) for
"Cai, Huaibin"
Sort by:
Connectivity and Functionality of the Globus Pallidus Externa Under Normal Conditions and Parkinson's Disease
2021
The globus pallidus externa (GPe) functions as a central hub in the basal ganglia for processing motor and non-motor information through the creation of complex connections with the other basal ganglia nuclei and brain regions. Recently, with the adoption of sophisticated genetic tools, substantial advances have been made in understanding the distinct molecular, anatomical, electrophysiological, and functional properties of GPe neurons and non-neuronal cells. Impairments in dopamine transmission in the basal ganglia contribute to Parkinson's disease (PD), the most common movement disorder that severely affects the patients' life quality. Altered GPe neuron activity and synaptic connections have also been found in both PD patients and pre-clinical models. In this review, we will summarize the main findings on the composition, connectivity and functionality of different GPe cell populations and the potential GPe-related mechanisms of PD symptoms to better understand the cell type and circuit-specific roles of GPe in both normal and PD conditions.
Journal Article
The essential role of transcription factor Pitx3 in preventing mesodiencephalic dopaminergic neurodegeneration and maintaining neuronal subtype identities during aging
2021
Pituitary homeobox 3
(
Pitx3
) is required for the terminal differentiation of nigrostriatal dopaminergic neurons during neuronal development. However, whether Pitx3 contributes to the normal physiological function and cell-type identity of adult neurons remains unknown. To explore the role of Pitx3 in maintaining mature neurons, we selectively deleted
Pitx3
in the mesodiencephalic dopaminergic (mdDA) neurons of
Pitx3
fl/fl/
DAT
CreERT2
bigenic mice using a tamoxifen inducible
Cre
ERT2
/
loxp
gene-targeting system.
Pitx3
fl/fl/
DAT
CreERT2
mice developed age-dependent progressive motor deficits, concomitant with a rapid reduction of striatal dopamine (DA) content and a profound loss of mdDA neurons in the substantia nigra pars compacta (SNc) but not in the adjacent ventral tegmental area (VTA), recapitulating the canonical neuropathological features of Parkinson’s disease (PD). Mechanistic studies showed that
Pitx3
-deficiency significantly increased the number of cleaved caspase-3
+
cells in SNc, which likely underwent neurodegeneration. Meanwhile, the vulnerability of SNc mdDA neurons was increased in
Pitx3
fl/fl/
DAT
CreERT2
mice, as indicated by an early decline in glial cell line-derived neurotrophic factor (GDNF) and aldehyde dehydrogenase 1a1 (Aldh1a1) levels. Noticeably, somatic accumulation of α-synuclein (α-syn) was also significantly increased in the
Pitx3
-deficient neurons. Together, our data demonstrate that the loss of Pitx3 in fully differentiated mdDA neurons results in progressive neurodegeneration, indicating the importance of the
Pitx3
gene in adult neuronal survival. Our findings also suggest that distinct Pitx3-dependent pathways exist in SNc and VTA mdDA neurons, correlating with the differential vulnerability of SNc and VTA mdDA neurons in the absence of
Pitx3
.
Journal Article
Longitudinal Metabolomics Profiling of Parkinson’s Disease-Related α-Synuclein A53T Transgenic Mice
2015
Metabolic homeostasis is critical for all biological processes in the brain. The metabolites are considered the best indicators of cell states and their rapid fluxes are extremely sensitive to cellular changes. While there are a few studies on the metabolomics of Parkinson's disease, it lacks longitudinal studies of the brain metabolic pathways affected by aging and the disease. Using ultra-high performance liquid chromatography and tandem mass spectroscopy (UPLC/MS), we generated the metabolomics profiling data from the brains of young and aged male PD-related α-synuclein A53T transgenic mice as well as the age- and gender-matched non-transgenic (nTg) controls. Principal component and unsupervised hierarchical clustering analyses identified distinctive metabolites influenced by aging and the A53T mutation. The following metabolite set enrichment classification revealed the alanine metabolism, redox and acetyl-CoA biosynthesis pathways were substantially disturbed in the aged mouse brains regardless of the genotypes, suggesting that aging plays a more prominent role in the alterations of brain metabolism. Further examination showed that the interaction effect of aging and genotype only disturbed the guanosine levels. The young A53T mice exhibited lower levels of guanosine compared to the age-matched nTg controls. The guanosine levels remained constant between the young and aged nTg mice, whereas the aged A53T mice showed substantially increased guanosine levels compared to the young mutant ones. In light of the neuroprotective function of guanosine, our findings suggest that the increase of guanosine metabolism in aged A53T mice likely represents a protective mechanism against neurodegeneration, while monitoring guanosine levels could be applicable to the early diagnosis of the disease.
Journal Article
Acute Hypoxia Induced an Imbalanced M1/M2 Activation of Microglia through NF-κB Signaling in Alzheimer’s Disease Mice and Wild-Type Littermates
2017
Alzheimer's disease (AD) is the most common neurodegenerative disease mainly caused by abnormal tau phosphorylation, amyloid β (Aβ) deposition and neuroinflammation. As an important environmental factor, hypoxia has been reported to aggravate AD via exacerbating Aβ and tau pathologies. However, the link between hypoxia and neuroinflammation, especially the changes of pro-inflammatory M1 or anti-inflammation M2 microglia phenotypes in AD, is still far from being clearly investigated. Here, we evaluated the activation of microglia in the brains of APP
/PS1
transgenic (Tg) mice and their wild type (Wt) littermates, after a single episode of acute hypoxia (24 h) exposure. We found that acute hypoxia activated M1 microglia in both Tg and Wt mice as evidenced by the elevated M1 markers including cluster of differentiation 86 (CD86), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), C-C motif chemokine ligand 2 (CCL2) and CCL3. In addition, the markers of M2 microglia phenotype (arginase-1 (Arg-1), CD206, IL-4 and IL-10) were decreased after acute hypoxia exposure, suggesting an attenuated M2 phenotype of microglia. Moreover, the activation of microglia and the release of cytokines and chemokines were associated with Nuclear factor-κB (NF-κB) induction through toll-like receptor 4 (TLR4). In summary, our findings revealed that acute hypoxia modulated microglia M1/M2 subgroup profile, indicating the pathological role of hypoxia in the neuroinflammation of AD.
Journal Article
Essential role for autophagy protein VMP1 in maintaining neuronal homeostasis and preventing axonal degeneration
2021
Vacuole membrane protein 1 (VMP1), the endoplasmic reticulum (ER)-localized autophagy protein, plays a key role during the autophagy process in mammalian cells. To study the impact of
VMP1
-deficiency on midbrain dopaminergic (mDAergic) neurons, we selectively deleted
VMP1
in the mDAergic neurons of
VMP1
fl/fl
/
DAT
CreERT2
bigenic mice using a tamoxifen-inducible
CreERT2/loxp
gene targeting system. The
VMP1
fl/fl
/
DAT
CreERT2
mice developed progressive motor deficits, concomitant with a profound loss of mDAergic neurons in the substantia nigra pars compacta (SNc) and a high presynaptic accumulation of α-synuclein (α-syn) in the enlarged terminals. Mechanistic studies showed that
VMP1
deficiency in the mDAergic neurons led to the increased number of microtubule-associated protein 1 light chain 3-labeled (LC3) puncta and the accumulation of sequestosome 1/p62 aggregates in the SNc neurons, suggesting the impairment of autophagic flux in these neurons. Furthermore,
VMP1
deficiency resulted in multiple cellular abnormalities, including large vacuolar-like structures (LVSs), damaged mitochondria, swollen ER, and the accumulation of ubiquitin
+
aggregates. Together, our studies reveal a previously unknown role of VMP1 in modulating neuronal survival and maintaining axonal homeostasis, which suggests that
VMP1
deficiency might contribute to mDAergic neurodegeneration via the autophagy pathway.
Journal Article
Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway
by
Giaime, Emilie
,
Si, Huiqing
,
Bonventre, Joseph V
in
Age Factors
,
Aging
,
alpha-Synuclein - genetics
2012
Background
Dominantly inherited missense mutations in leucine-rich repeat kinase 2 (LRRK2) are the most common genetic cause of Parkinson's disease, but its normal physiological function remains unclear. We previously reported that loss of LRRK2 causes impairment of protein degradation pathways as well as increases of apoptotic cell death and inflammatory responses in the kidney of aged mice.
Results
Our analysis of
LRRK2
-/- kidneys at multiple ages, such as 1, 4, 7, and 20 months, revealed unique age-dependent development of a variety of molecular, cellular, and ultrastructural changes. Gross morphological abnormalities of the kidney, including altered size, weight, texture, and color, are evident in
LRRK2
-/- mice at 3-4 months of age, along with increased accumulation of autofluorescent granules in proximal renal tubules. The ratio of kidney/body weight in
LRRK2
-/- mice is increased at 1, 4, and 7 months of age (~10% at 1 month, and ~20% at 4 and 7 months), whereas the ratio is drastically decreased at 20 months of age (~50%). While kidney filtration function evaluated by levels of blood urea nitrogen and serum creatinine is not significantly affected in
LRRK2
-/- mice at 12-14 months of age, expression of kidney injury molecule-1, a sensitive and specific biomarker for epithelial cell injury of proximal renal tubules, is up-regulated (~10-fold). Surprisingly, loss of LRRK2 causes age-dependent bi-phasic alterations of the autophagic activity in
LRRK2
-/- kidneys, which is unchanged at 1 month of age, enhanced at 7 months but reduced at 20 months, as evidenced by corresponding changes in the levels of LC3-I/II, a reliable autophagy marker, and p62, an autophagy substrate. Levels of α-synuclein and protein carbonyls, a general oxidative damage marker, are also decreased in
LRRK2
-/- kidneys at 7 months of age but increased at 20 months. Interestingly, the age-dependent bi-phasic alterations in autophagic activity in
LRRK2
-/- kidneys is accompanied by increased levels of lysosomal proteins and proteases at 1, 7, and 20 months of age as well as progressive accumulation of autolysosomes and lipofuscin granules at 4, 7-10, and 20 months of age.
Conclusions
LRRK2 is important for the dynamic regulation of autophagy function
in vivo
.
Journal Article
Low-level overexpression of wild type TDP-43 causes late-onset, progressive neurodegeneration and paralysis in mice
by
Brown, Robert H.
,
Yusuf, Issa
,
Wang, Hongyan
in
Amyotrophic lateral sclerosis
,
Analysis
,
Animal models
2022
Modestly increased expression of transactive response DNA binding protein (
TDP-43
) gene have been reported in amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), and other neuromuscular diseases. However, whether this modest elevation triggers neurodegeneration is not known. Although high levels of TDP-43 overexpression have been modeled in mice and shown to cause early death, models with low-level overexpression that mimic the human condition have not been established. In this study, transgenic mice overexpressing wild type TDP-43 at less than 60% above the endogenous CNS levels were constructed, and their phenotypes analyzed by a variety of techniques, including biochemical, molecular, histological, behavioral techniques and electromyography. The TDP-43 transgene was expressed in neurons, astrocytes, and oligodendrocytes in the cortex and predominantly in astrocytes and oligodendrocytes in the spinal cord. The mice developed a reproducible progressive weakness ending in paralysis in mid-life. Detailed analysis showed ~30% loss of large pyramidal neurons in the layer V motor cortex; in the spinal cord, severe demyelination was accompanied by oligodendrocyte injury, protein aggregation, astrogliosis and microgliosis, and elevation of neuroinflammation. Surprisingly, there was no loss of lower motor neurons in the lumbar spinal cord despite the complete paralysis of the hindlimbs. However, denervation was detected at the neuromuscular junction. These results demonstrate that low-level TDP-43 overexpression can cause diverse aspects of ALS, including late-onset and progressive motor dysfunction, neuroinflammation, and neurodegeneration. Our findings suggest that persistent modest elevations in TDP-43 expression can lead to ALS and other neurological disorders involving TDP-43 proteinopathy. Because of the predictable and progressive clinical paralytic phenotype, this transgenic mouse model will be useful in preclinical trial of therapeutics targeting neurological disorders associated with elevated levels of TDP-43.
Journal Article
The IkappaB Kinase Family Phosphorylates the Parkinson’s Disease Kinase LRRK2 at Ser935 and Ser910 during Toll-Like Receptor Signaling
2012
Mutations in leucine-rich repeat kinase 2 (LRRK2) are strongly associated with late-onset autosomal dominant Parkinson's disease. LRRK2 is highly expressed in immune cells and recent work points towards a link between LRRK2 and innate immunity. Here we demonstrate that stimulation of the Toll-Like Receptor (TLR) pathway by MyD88-dependent agonists in bone marrow-derived macrophages (BMDMs) or RAW264.7 macrophages induces marked phosphorylation of LRRK2 at Ser910 and Ser935, the phosphorylation sites that regulate the binding of 14-3-3 to LRRK2. Phosphorylation of these residues is prevented by knock-out of MyD88 in BMDMs, but not the alternative TLR adaptor protein TRIF. Utilising both pharmacological inhibitors, including a new TAK1 inhibitor, NG25, and genetic models, we provide evidence that both the canonical (IKKα and IKKβ) and IKK-related (IKKε and TBK1) kinases mediate TLR agonist induced phosphorylation of LRRK2 in vivo. Moreover, all four IKK members directly phosphorylate LRRK2 at Ser910 and Ser935 in vitro. Consistent with previous work describing Ser910 and Ser935 as pharmacodynamic biomarkers of LRRK2 activity, we find that the TLR independent basal phosphorylation of LRRK2 at Ser910 and Ser935 is abolished following treatment of macrophages with LRRK2 kinase inhibitors. However, the increased phosphorylation of Ser910 and Ser935 induced by activation of the MyD88 pathway is insensitive to LRRK2 kinase inhibitors. Finally, employing LRRK2-deficient BMDMs, we present data indicating that LRRK2 does not play a major role in regulating the secretion of inflammatory cytokines induced by activation of the MyD88 pathway. Our findings provide the first direct link between LRRK2 and the IKKs that mediate many immune responses. Further work is required to uncover the physiological roles that phosphorylation of LRRK2 by IKKs play in controlling macrophage biology and to determine how phosphorylation of LRRK2 by IKKs impacts upon the use of Ser910 and Ser935 as pharmacodynamic biomarkers.
Journal Article
Molecularly distinct striatonigral neuron subtypes differentially regulate locomotion
2025
Striatonigral neurons, traditionally known for promoting locomotion, comprise diverse subtypes with distinct transcriptomic profiles. However, their specific contributions to locomotor regulation remain incompletely understood. Using the genetic markers
Kremen1
and
Calb1
, we demonstrate in mouse models that
Kremen1
+
and
Calb1
+
striatonigral neurons exerted opposing effects on locomotion.
Kremen1
+
neurons displayed delayed activation at locomotion onset but exhibited increasing activity during locomotion offset. In contrast,
Calb1
+
neurons showed early activation at locomotion onset and decreasing activity during locomotion offset. Optogenetic activation of
Kremen1
+
neurons suppressed ongoing locomotion, whereas activation of
Calb1
+
neurons promoted locomotion. Activation of
Kremen1
+
neurons induced a greater reduction in dopamine release than
Calb1
+
neurons, followed by a post-stimulation rebound. Conversely, activation of
Calb1
+
neurons triggered an initial increase in dopamine release. Furthermore, genetic knockdown of GABA-B receptor
Gabbr1
in
Aldh1a1
+
nigrostriatal dopaminergic neurons (DANs) reduced DAN inhibition and completely abolished the locomotion-suppressing effect of
Kremen1
+
neurons. Together, these findings reveal a cell type-specific mechanism within striatonigral neuron subtypes:
Calb1
+
neurons promote locomotion, while
Kremen1
+
neurons terminate ongoing movement by inhibiting
Aldh1a1
+
DAN activity via GABBR1 receptors.
Striatonigral neurons comprise diverse subtypes, yet their specific roles in locomotion regulation are not fully understood. Here, authors demonstrate that the Calb1+ subtype promotes locomotion, while the Kremen1+ subtype terminates ongoing movement by inhibiting the activity of Aldh1a1+ dopaminergic neurons via GABBR1 receptors.
Journal Article
Astrocytic expression of Parkinson's disease-related A53T α-synuclein causes neurodegeneration in mice
by
Lin, Xian
,
Gu, Xing-Long
,
Xie, Chengsong
in
alpha-Synuclein - genetics
,
alpha-Synuclein - metabolism
,
Animals
2010
Background
Parkinson's disease (PD) is the most common movement disorder. While neuronal deposition of α-synuclein serves as a pathological hallmark of PD and Dementia with Lewy Bodies, α-synuclein-positive protein aggregates are also present in astrocytes. The pathological consequence of astrocytic accumulation of α-synuclein, however, is unclear.
Results
Here we show that PD-related A53T mutant α-synuclein, when selectively expressed in astrocytes, induced rapidly progressed paralysis in mice. Increasing accumulation of α-synuclein aggregates was found in presymptomatic and symptomatic mouse brains and correlated with the expansion of reactive astrogliosis. The normal function of astrocytes was compromised as evidenced by cerebral microhemorrhage and down-regulation of astrocytic glutamate transporters, which also led to increased inflammatory responses and microglial activation. Interestingly, the activation of microglia was mainly detected in the midbrain, brainstem and spinal cord, where a significant loss of dopaminergic and motor neurons was observed. Consistent with the activation of microglia, the expression level of cyclooxygenase 1 (COX-1) was significantly up-regulated in the brain of symptomatic mice and in cultured microglia treated with conditioned medium derived from astrocytes over-expressing A53T α-synuclein. Consequently, the suppression of COX-1 activities extended the survival of mutant mice, suggesting that excess inflammatory responses elicited by reactive astrocytes may contribute to the degeneration of neurons.
Conclusions
Our findings demonstrate a critical involvement of astrocytic α-synuclein in initiating the non-cell autonomous killing of neurons, suggesting the viability of reactive astrocytes and microglia as potential therapeutic targets for PD and other neurodegenerative diseases.
Journal Article