Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
56
result(s) for
"Carpenter, Eileen S."
Sort by:
GOT1 inhibition promotes pancreatic cancer cell death by ferroptosis
2021
Cancer metabolism is rewired to support cell survival in response to intrinsic and environmental stressors. Identification of strategies to target these adaptions is an area of active research. We previously described a cytosolic aspartate aminotransaminase (GOT1)-driven pathway in pancreatic cancer used to maintain redox balance. Here, we sought to identify metabolic dependencies following GOT1 inhibition to exploit this feature of pancreatic cancer and to provide additional insight into regulation of redox metabolism. Using pharmacological methods, we identify cysteine, glutathione, and lipid antioxidant function as metabolic vulnerabilities following GOT1 withdrawal. We demonstrate that targeting any of these pathways triggers ferroptosis, an oxidative, iron-dependent form of cell death, in GOT1 knockdown cells. Mechanistically, we reveal that GOT1 inhibition represses mitochondrial metabolism and promotes a catabolic state. Consequently, we find that this enhances labile iron availability through autophagy, which potentiates the activity of ferroptotic stimuli. Overall, our study identifies a biochemical connection between GOT1, iron regulation, and ferroptosis.
The aspartate aminotransaminase GOT1 is important for maintaining redox balance. Here, the authors show that inhibition of GOT1 in pancreatic cancer cells leads to cell death via ferroptosis.
Journal Article
Multimodal mapping of the tumor and peripheral blood immune landscape in human pancreatic cancer
by
The, Stephanie
,
Paglia, Daniel
,
Anderson, Michelle A.
in
Biopsy
,
CD8-Positive T-Lymphocytes - pathology
,
Cells
2020
Pancreatic ductal adenocarcinoma (PDA) is characterized by an immune-suppressive tumor microenvironment that renders it largely refractory to immunotherapy. We implemented a multimodal analysis approach to elucidate the immune landscape in PDA. Using a combination of CyTOF, single-cell RNA sequencing, and multiplex immunohistochemistry on patient tumors, matched blood, and non-malignant samples, we uncovered a complex network of immune-suppressive cellular interactions. These experiments revealed heterogeneous expression of immune checkpoint receptors in individual patient's T cells and increased markers of CD8
T cell dysfunction in advanced disease stage. Tumor-infiltrating CD8
T cells had an increased proportion of cells expressing an exhausted expression profile that included upregulation of the immune checkpoint
, a finding that we validated at the protein level. Our findings point to a profound alteration of the immune landscape of tumors, and to patient-specific immune changes that should be taken into account as combination immunotherapy becomes available for pancreatic cancer.
Journal Article
Hypoxia promotes an inflammatory phenotype of fibroblasts in pancreatic cancer
by
Pasca di Magliano, Marina
,
Ngodup, Tenzin
,
Crawford, Howard C
in
Adenocarcinoma
,
Fibroblasts
,
Genotype & phenotype
2022
Pancreatic ductal adenocarcinoma (PDAC) is characterized by an extensive fibroinflammatory stroma and often experiences conditions of insufficient oxygen availability or hypoxia. Cancer-associated fibroblasts (CAF) are a predominant and heterogeneous population of stromal cells within the pancreatic tumor microenvironment. Here, we uncover a previously unrecognized role for hypoxia in driving an inflammatory phenotype in PDAC CAFs. We identify hypoxia as a strong inducer of tumor IL1ɑ expression, which is required for inflammatory CAF (iCAF) formation. Notably, iCAFs preferentially reside in hypoxic regions of PDAC. Our data implicate hypoxia as a critical regulator of CAF heterogeneity in PDAC.
Journal Article
Endoscopic Ultrasound-Guided Ablation of Premalignant Pancreatic Cysts and Pancreatic Cancer
by
Dutta, Priyata
,
Carpenter, Eileen S.
,
Machicado, Jorge D.
in
Ablation
,
Ablation (Surgery)
,
Accuracy
2024
Pancreatic cancer is on the rise and expected to become the second leading cause of cancer-related death by 2030. Up to a one-fifth of pancreatic cancers may arise from mucinous pancreatic cysts, which are frequently present in the general population. Currently, surgical resection is the only curative approach for pancreatic cancer and its cystic precursors. However, only a dismal proportion of patients are eligible for surgery. Therefore, novel treatment approaches to treat pancreatic cancer and precancerous pancreatic cysts are needed. Endoscopic ultrasound (EUS)-guided ablation is an emerging minimally invasive method to treat pancreatic cancer and premalignant pancreatic cysts. Different ablative modalities have been used including alcohol, chemotherapy agents, and radiofrequency ablation. Cumulative data over the past two decades have shown that endoscopic ablation of mucinous pancreatic cysts can lead to cyst resolution in a significant proportion of the treated cysts. Furthermore, novel data are emerging about the ability to endoscopically ablate early and locally advanced pancreatic cancer. In this review, we aim to summarize the available data on the efficacy and safety of the different EUS-ablation modalities for the management of premalignant pancreatic cysts and pancreatic cancer.
Journal Article
Pancreatic cancer is marked by complement-high blood monocytes and tumor-associated macrophages
2021
Pancreatic ductal adenocarcinoma (PDA) is accompanied by reprogramming of the local microenvironment, but changes at distal sites are poorly understood. We implanted biomaterial scaffolds, which act as an artificial premetastatic niche, into immunocompetent tumor-bearing and control mice, and identified a unique tumor-specific gene expression signature that includes high expression of
C1qa
,
C1qb
,
Trem2
, and
Chil3
. Single-cell RNA sequencing mapped these genes to two distinct macrophage populations in the scaffolds, one marked by elevated
C1qa
,
C1qb
, and
Trem2
, the other with high
Chil3
,
Ly6c2
and
Plac8
. In mice, expression of these genes in the corresponding populations was elevated in tumor-associated macrophages compared with macrophages in the normal pancreas. We then analyzed single-cell RNA sequencing from patient samples, and determined expression of
C1QA
,
C1QB
, and
TREM2
is elevated in human macrophages in primary tumors and liver metastases. Single-cell sequencing analysis of patient blood revealed a substantial enrichment of the same gene signature in monocytes. Taken together, our study identifies two distinct tumor-associated macrophage and monocyte populations that reflects systemic immune changes in pancreatic ductal adenocarcinoma patients.
Journal Article
Metabolic landscape of the healthy pancreas and pancreatic tumor microenvironment
by
Perricone, Matthew D.
,
Green, Michael D.
,
Elhossiny, Ahmed M.
in
Approximation
,
Beta cells
,
Blood & organ donations
2024
Pancreatic cancer, one of the deadliest human malignancies, is characterized by a fibro-inflammatory tumor microenvironment and wide array of metabolic alterations. To comprehensively map metabolism in a cell type-specific manner, we harnessed a unique single-cell RNA-sequencing dataset of normal human pancreata. This was compared with human pancreatic cancer samples using a computational pipeline optimized for this study. In the cancer cells we observed enhanced biosynthetic programs. We identified downregulation of mitochondrial programs in several immune populations, relative to their normal counterparts in healthy pancreas. Although granulocytes, B cells, and CD8+ T cells all downregulated oxidative phosphorylation, the mechanisms by which this occurred were cell type specific. In fact, the expression pattern of the electron transport chain complexes was sufficient to identify immune cell types without the use of lineage markers. We also observed changes in tumor-associated macrophage (TAM) lipid metabolism, with increased expression of enzymes mediating unsaturated fatty acid synthesis and upregulation in cholesterol export. Concurrently, cancer cells exhibited upregulation of lipid/cholesterol receptor import. We thus identified a potential crosstalk whereby TAMs provide cholesterol to cancer cells. We suggest that this may be a new mechanism boosting cancer cell growth and a therapeutic target in the future.
Journal Article
Uridine-derived ribose fuels glucose-restricted pancreatic cancer
2023
Pancreatic ductal adenocarcinoma (PDA) is a lethal disease notoriously resistant to therapy
1
,
2
. This is mediated in part by a complex tumour microenvironment
3
, low vascularity
4
, and metabolic aberrations
5
,
6
. Although altered metabolism drives tumour progression, the spectrum of metabolites used as nutrients by PDA remains largely unknown. Here we identified uridine as a fuel for PDA in glucose-deprived conditions by assessing how more than 175 metabolites impacted metabolic activity in 21 pancreatic cell lines under nutrient restriction. Uridine utilization strongly correlated with the expression of uridine phosphorylase 1 (UPP1), which we demonstrate liberates uridine-derived ribose to fuel central carbon metabolism and thereby support redox balance, survival and proliferation in glucose-restricted PDA cells. In PDA,
UPP1
is regulated by KRAS–MAPK signalling and is augmented by nutrient restriction. Consistently, tumours expressed high
UPP1
compared with non-tumoural tissues, and
UPP1
expression correlated with poor survival in cohorts of patients with PDA. Uridine is available in the tumour microenvironment, and we demonstrated that uridine-derived ribose is actively catabolized in tumours. Finally, UPP1 deletion restricted the ability of PDA cells to use uridine and blunted tumour growth in immunocompetent mouse models. Our data identify uridine utilization as an important compensatory metabolic process in nutrient-deprived PDA cells, suggesting a novel metabolic axis for PDA therapy.
A metabolite screen of pancreatic cells shows that pancreatic cancer cells metabolize uridine-derived ribose via UPP1, supporting redox balance, survival and proliferation.
Journal Article
Spatial analysis of IPMNs defines a paradoxical KRT17-positive, low-grade epithelial population harboring malignant features
2025
Intraductal papillary mucinous neoplasms (IPMNs) are pancreatic cysts that represent one of the few radiologically identifiable precursors to pancreatic ductal adenocarcinoma (PDAC).Though the IPMN-bearing patient population represents a unique opportunity for early detection and interception, current guidelines provide insufficient accuracy in determining which patients should undergo resection versus surveillance, resulting in a sizable fraction of resected IPMNs only harboring low-grade dysplasia, suggesting that there may be overtreatment of this clinical entity.
To investigate the transcriptional changes that occur during IPMN progression, we performed spatial transcriptomics using the Nanostring GeoMx on patient samples containing the entire spectrum of IPMN disease including low-grade dysplasia, high-grade dysplasia, and IPMN-derived carcinoma. Single cell RNA sequencing was performed on side branch and main duct IPMN biospecimens.
We identified a subpopulation of histologically low-grade IPMN epithelial cells that express malignant transcriptional features including
,
and
, markers that are enriched in PDAC. We validated and refined this high-risk gene signature by integrating our ST analysis with an external ST dataset containing a larger number of IPMN samples including non-tumor bearing IPMN (i.e. low-grade IPMN in isolation). We confirmed the presence of the KRT17+ population using immunofluorescence on a large cohort of patient tissues, revealing a widespread but patchy distribution of KRT17+ cells in histologically low-grade IPMN.
Our study demonstrates that KRT17 marks a distinct transcriptional signature in a subpopulation of epithelial cells within histologically low-grade IPMN. This population of cells likely represents a transitional state of histologically low-grade epithelial cells undergoing progression to a higher grade of dysplasia and thus may represent a higher risk of progression to carcinoma.
Journal Article
Notch signaling regulates immunosuppressive tumor-associated macrophage function in pancreatic cancer
2023
Pancreatic ductal adenocarcinoma (PDA) continues to have a dismal prognosis. The poor survival of patients with PDA has been attributed to a high rate of early metastasis and low efficacy of current therapies, which partly result from its complex immunosuppressive tumor microenvironment. Previous studies from our group and others have shown that tumor-associated macrophages (TAMs) are instrumental in maintaining immunosuppression in PDA. Here, we explored the role of Notch signaling, a key regulator of immune response, within the PDA microenvironment. We identified Notch pathway components in multiple immune cell types within human and mouse pancreatic cancer. TAMs, the most abundant immune cell population in the tumor microenvironment, express high levels of Notch receptors with cognate ligands such as JAG1 expressed on tumor epithelial cells, endothelial cells and fibroblasts. TAMs with activated Notch signaling expressed higher levels of immunosuppressive mediators including arginase 1 (Arg1) suggesting that Notch signaling plays a role in macrophage polarization within the PDA microenvironment. Combination of Notch inhibition with PD-1 blockade resulted in increased cytotoxic T cell infiltration, tumor cell apoptosis, and smaller tumor size. Our work implicates macrophage Notch signaling in the establishment of immunosuppression and indicates that targeting the Notch pathway may improve the efficacy of immune-based therapies in PDA patients.Competing Interest StatementThe authors have declared no competing interest.