Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
90
result(s) for
"Castilla, Joaquín"
Sort by:
Detection of amyloid fibrils in Parkinson’s disease using plasmonic chirality
by
Castilla, Joaquín
,
Liz-Marzán, Luis M.
,
Kumar, Jatish
in
Brain
,
Chirality
,
Cryogenic engineering
2018
Amyloid fibrils, which are closely associated with various neurodegenerative diseases, are the final products in many protein aggregation pathways. The identification of fibrils at low concentration is, therefore, pivotal in disease diagnosis and development of therapeutic strategies. We report a methodology for the specific identification of amyloid fibrils using chiroptical effects in plasmonic nanoparticles. The formation of amyloid fibrils based on α-synuclein was probed using gold nanorods, which showed no apparent interaction with monomeric proteins but effective adsorption onto fibril structures via noncovalent interactions. The amyloid structure drives a helical nanorod arrangement, resulting in intense optical activity at the surface plasmon resonance wavelengths. This sensing technique was successfully applied to human brain homogenates of patients affected by Parkinson’s disease, wherein protein fibrils related to the disease were identified through chiral signals from Au nanorods in the visible and near IR, whereas healthy brain samples did not exhibit any meaningful optical activity. The technique was additionally extended to the specific detection of infectious amyloids formed by prion proteins, thereby confirming the wide potential of the technique. The intense chiral response driven by strong dipolar coupling in helical Au nanorod arrangements allowed us to detect amyloid fibrils down to nanomolar concentrations.
Journal Article
Presymptomatic Detection of Prions in Blood
2006
Prions are thought to be the proteinaceous infectious agents responsible for transmissible spongiform encephalopathies (TSEs). PrPSc, the main component of the infectious agent, is also the only validated surrogate marker for the disease, and its sensitive detection is critical for minimizing the spread of the disease. We detected PrPSc biochemically in the blood of hamsters infected with scrapie during most of the presymptomatic phase of the disease. At early stages of the incubation period, PrPSc detected in blood was likely to be from the peripheral replication of prions, whereas at the symptomatic phase, PrPSc in blood was more likely to have leaked from the brain. The ability to detect prions biochemically in the blood of infected but not clinically sick animals offers a great promise for the noninvasive early diagnosis of TSEs.
Journal Article
Detection of chronic wasting disease in mule and white-tailed deer by RT-QuIC analysis of outer ear
2021
Efforts to contain the spread of chronic wasting disease (CWD), a fatal, contagious prion disease of cervids, would be aided by the availability of additional diagnostic tools. RT-QuIC assays allow ultrasensitive detection of prion seeds in a wide variety of cervid tissues, fluids and excreta. The best documented
antemortem
diagnostic test involving RT-QuIC analysis targets lymphoid tissue in rectal biopsies. Here we have tested a more easily accessed specimen, ear pinna punches, using an improved RT-QuIC assay involving iron oxide magnetic extraction to detect CWD infections in asymptomatic mule and white-tailed deer. Comparison of multiple parts of the ear pinna indicated that a central punch spanning the auricular nerve provided the most consistent detection of CWD infection. When compared to results obtained from gold-standard retropharyngeal lymph node specimens, our RT-QuIC analyses of ear samples provided apparent diagnostic sensitivity (81%) and specificity (91%) that rivaled, or improved upon, those observed in previous analyses of rectal biopsies using RT-QuIC. These results provide evidence that RT-QuIC analysis of ear pinna punches may be a useful approach to detecting CWD infections in cervids.
Journal Article
Glycans are not necessary to maintain the pathobiological features of bovine spongiform encephalopathy
by
Díaz-Domínguez, Carlos M
,
Torres, Juan M
,
Castilla, Joaquín
in
Animal biology
,
Bioassays
,
Biochemical characteristics
2022
The role of the glycosylation status of PrP
C
in the conversion to its pathological counterpart and on cross-species transmission of prion strains has been widely discussed. Here, we assessed the effect on strain characteristics of bovine spongiform encephalopathy (BSE) isolates with different transmission histories upon propagation on a model expressing a non-glycosylated human PrP
C
. Bovine, ovine and porcine-passaged BSE, and variant Creutzfeldt-Jakob disease (vCJD) isolates were used as seeds/inocula in both
in vitro
and
in vivo
propagation assays using the non-glycosylated human PrP
C
-expressing mouse model (TgNN6h). After protein misfolding cyclic amplification (PMCA), all isolates maintained the biochemical characteristics of BSE. On bioassay, all PMCA-propagated BSE prions were readily transmitted to TgNN6h mice, in agreement with our previous
in vitro
results. TgNN6h mice reproduced the characteristic neuropathological and biochemical hallmarks of BSE, suggesting that the absence of glycans did not alter the pathobiological features of BSE prions. Moreover, back-passage of TgNN6h-adapted BSE prions to BoTg110 mice recovered the full BSE phenotype, confirming that the glycosylation of human PrP
C
is not essential for the preservation of the human transmission barrier for BSE prions or for the maintenance of BSE strain properties.
Journal Article
Detection of prions in blood
2005
Prion diseases are caused by an unconventional infectious agent termed prion, composed mainly of the misfolded prion protein (PrPSc). The development of highly sensitive assays for biochemical detection of PrPSc in blood is a top priority for minimizing the spread of the disease. Here we show that the protein misfolding cyclic amplification (PMCA) technology can be automated and optimized for high-efficiency amplification of PrPSc. We show that 140 PMCA cycles leads to a 6,600-fold increase in sensitivity over standard detection methods. Two successive rounds of PMCA cycles resulted in a 10 million-fold increase in sensitivity and a capability to detect as little as 8,000 equivalent molecules of PrPSc. Notably, serial PMCA enables detection of PrPSc in blood samples of scrapie-afflicted hamsters with 89% sensitivity and 100% specificity. These findings represent the first time that PrPSc has been detected biochemically in blood, offering promise for developing a noninvasive method for early diagnosis of prion diseases.
Journal Article
Cell-free propagation of prion strains
by
Castilla, Joaquín
,
Saá, Paula
,
Gambetti, Pierluigi
in
Animals
,
Biochemistry
,
Biomedical research
2008
Prions are the infectious agents responsible for prion diseases, which appear to be composed exclusively by the misfolded prion protein (PrP
Sc
). Disease is transmitted by the autocatalytic propagation of PrP
Sc
misfolding at the expense of the normal prion protein. The biggest challenge of the prion hypothesis has been to explain the molecular mechanism by which prions can exist as different strains, producing diseases with distinguishable characteristics. Here, we show that PrP
Sc
generated
in vitro
by protein misfolding cyclic amplification from five different mouse prion strains maintains the strain‐specific properties. Inoculation of wild‐type mice with
in vitro
‐generated PrP
Sc
caused a disease with indistinguishable incubation times as well as neuropathological and biochemical characteristics as the parental strains. Biochemical features were also maintained upon replication of four human prion strains. These results provide additional support for the prion hypothesis and indicate that strain characteristics can be faithfully propagated in the absence of living cells, suggesting that strain variation is dependent on PrP
Sc
properties.
Journal Article
Prion Strain Mutation Determined by Prion Protein Conformational Compatibility and Primary Structure
by
Mathiason, Candace
,
Kang, Hae-Eun
,
Castilla, Joaquín
in
Amino Acid Sequence
,
Animal diseases
,
Animals
2010
Prions are infectious proteins composed of the abnormal disease-causing isoform PrPSc, which induces conformational conversion of the host-encoded normal cellular prion protein PrPC to additional PrPSc. The mechanism underlying prion strain mutation in the absence of nucleic acids remains unresolved. Additionally, the frequency of strains causing chronic wasting disease (CWD), a burgeoning prion epidemic of cervids, is unknown. Using susceptible transgenic mice, we identified two prevalent CWD strains with divergent biological properties but composed of PrPSc with indistinguishable biochemical characteristics. Although CWD transmissions indicated stable, independent strain propagation by elk PrPC, strain coexistence in the brains of deer and transgenic mice demonstrated unstable strain propagation by deer PrPC. The primary structures of deer and elk prion proteins differ at residue 226, which, in concert with PrPSc conformational compatibility, determines prion strain mutation in these cervids.
Journal Article
Chronic wasting disease in bank voles: characterisation of the shortest incubation time model for prion diseases
2013
In order to assess the susceptibility of bank voles to chronic wasting disease (CWD), we inoculated voles carrying isoleucine or methionine at codon 109 (Bv109I and Bv109M, respectively) with CWD isolates from elk, mule deer and white-tailed deer. Efficient transmission rate (100%) was observed with mean survival times ranging from 156 to 281 days post inoculation. Subsequent passages in Bv109I allowed us to isolate from all CWD sources the same vole-adapted CWD strain (Bv(109I)CWD), typified by unprecedented short incubation times of 25-28 days and survival times of ∼35 days. Neuropathological and molecular characterisation of Bv(109I)CWD showed that the classical features of mammalian prion diseases were all recapitulated in less than one month after intracerebral inoculation. Bv(109I)CWD was characterised by a mild and discrete distribution of spongiosis and relatively low levels of protease-resistant PrP(Sc) (PrP(res)) in the same brain regions. Despite the low PrP(res) levels and the short time lapse available for its accumulation, end-point titration revealed that brains from terminally-ill voles contained up to 10(8,4) i.c. ID50 infectious units per gram. Bv(109I)CWD was efficiently replicated by protein misfolding cyclic amplification (PMCA) and the infectivity faithfully generated in vitro, as demonstrated by the preservation of the peculiar Bv(109I)CWD strain features on re-isolation in Bv109I. Overall, we provide evidence that the same CWD strain was isolated in Bv109I from the three-cervid species. Bv(109I)CWD showed unique characteristics of \"virulence\", low PrP(res) accumulation and high infectivity, thus providing exceptional opportunities to improve basic knowledge of the relationship between PrP(Sc), neurodegeneration and infectivity.
Journal Article
A molecular switch controls interspecies prion disease transmission in mice
by
Manco, Giuseppe
,
Castilla, Joaquín
,
Nilsson, K Peter R
in
Amino acids
,
Animals
,
Biomedical research
2010
Transmissible spongiform encephalopathies are lethal neurodegenerative disorders that present with aggregated forms of the cellular prion protein (PrPC), which are known as PrPSc. Prions from different species vary considerably in their transmissibility to xenogeneic hosts. The variable transmission barriers depend on sequence differences between incoming PrPSc and host PrPC and additionally, on strain-dependent conformational properties of PrPSc. The beta2-alpha2 loop region within PrPC varies substantially between species, with its structure being influenced by the residue types in the 2 amino acid sequence positions 170 (most commonly S or N) and 174 (N or T). In this study, we inoculated prions from 5 different species into transgenic mice expressing either disordered-loop or rigid-loop PrPC variants. Similar beta2-alpha2 loop structures correlated with efficient transmission, whereas dissimilar loops correlated with strong transmission barriers. We then classified literature data on cross-species transmission according to the 170S/N polymorphism. Transmission barriers were generally low between species with the same amino acid residue in position 170 and high between those with different residues. These findings point to a triggering role of the local beta2-alpha2 loop structure for prion transmissibility between different species.
Journal Article
Prion-Associated Neurodegeneration Causes Both Endoplasmic Reticulum Stress and Proteasome Impairment in a Murine Model of Spontaneous Disease
by
Fernández Borges, Natalia
,
Castilla, Joaquín
,
Bolea, Rosa
in
Animals
,
Brain - metabolism
,
Disease Models, Animal
2021
Prion diseases are a group of neurodegenerative disorders that can be spontaneous, familial or acquired by infection. The conversion of the prion protein PrP
to its abnormal and misfolded isoform PrP
is the main event in the pathogenesis of prion diseases of all origins. In spontaneous prion diseases, the mechanisms that trigger the formation of PrP
in the central nervous system remain unknown. Several reports have demonstrated that the accumulation of PrP
can induce endoplasmic reticulum (ER) stress and proteasome impairment from the early stages of the prion disease. Both mechanisms lead to an increment of PrP aggregates in the secretory pathway, which could explain the pathogenesis of spontaneous prion diseases. Here, we investigate the role of ER stress and proteasome impairment during prion disorders in a murine model of spontaneous prion disease (TgVole) co-expressing the Ub
-GFP reporter, which allows measuring the proteasome activity in vivo. Spontaneously prion-affected mice showed a significantly higher accumulation of the PKR-like ER kinase (PERK), the ER chaperone binding immunoglobulin protein (BiP/Grp78), the ER protein disulfide isomerase (PDI) and the Ub
-GFP reporter than age-matched controls in certain brain areas. The upregulation of PERK, BiP, PDI and ubiquitin was detected from the preclinical stage of the disease, indicating that ER stress and proteasome impairment begin at early stages of the spontaneous disease. Strong correlations were found between the deposition of these markers and neuropathological markers of prion disease in both preclinical and clinical mice. Our results suggest that both ER stress and proteasome impairment occur during the pathogenesis of spontaneous prion diseases.
Journal Article