Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
163
result(s) for
"Chiu, Charles Y"
Sort by:
Validation of Metagenomic Next-Generation Sequencing Tests for Universal Pathogen Detection
2017
- Metagenomic sequencing can be used for detection of any pathogens using unbiased, shotgun next-generation sequencing (NGS), without the need for sequence-specific amplification. Proof-of-concept has been demonstrated in infectious disease outbreaks of unknown causes and in patients with suspected infections but negative results for conventional tests. Metagenomic NGS tests hold great promise to improve infectious disease diagnostics, especially in immunocompromised and critically ill patients.
- To discuss challenges and provide example solutions for validating metagenomic pathogen detection tests in clinical laboratories. A summary of current regulatory requirements, largely based on prior guidance for NGS testing in constitutional genetics and oncology, is provided.
- Examples from 2 separate validation studies are provided for steps from assay design, and validation of wet bench and bioinformatics protocols, to quality control and assurance.
- Although laboratory and data analysis workflows are still complex, metagenomic NGS tests for infectious diseases are increasingly being validated in clinical laboratories. Many parallels exist to NGS tests in other fields. Nevertheless, specimen preparation, rapidly evolving data analysis algorithms, and incomplete reference sequence databases are idiosyncratic to the field of microbiology and often overlooked.
Journal Article
Rapid pathogen detection by metagenomic next-generation sequencing of infected body fluids
2021
We developed a metagenomic next-generation sequencing (mNGS) test using cell-free DNA from body fluids to identify pathogens. The performance of mNGS testing of 182 body fluids from 160 patients with acute illness was evaluated using two sequencing platforms in comparison to microbiological testing using culture, 16S bacterial PCR and/or 28S–internal transcribed ribosomal gene spacer (28S–ITS) fungal PCR. Test sensitivity and specificity of detection were 79 and 91% for bacteria and 91 and 89% for fungi, respectively, by Illumina sequencing; and 75 and 81% for bacteria and 91 and 100% for fungi, respectively, by nanopore sequencing. In a case series of 12 patients with culture/PCR-negative body fluids but for whom an infectious diagnosis was ultimately established, seven (58%) were mNGS positive. Real-time computational analysis enabled pathogen identification by nanopore sequencing in a median 50-min sequencing and 6-h sample-to-answer time. Rapid mNGS testing is a promising tool for diagnosis of unknown infections from body fluids.
A universal method enables high-specificity, unbiased pathogen detection from diverse body fluids using metagenomic sequencing and may accelerate clinical decisions.
Journal Article
A mouse model of paralytic myelitis caused by enterovirus D68
2017
In 2014, the United States experienced an epidemic of acute flaccid myelitis (AFM) cases in children coincident with a nationwide outbreak of enterovirus D68 (EV-D68) respiratory disease. Up to half of the 2014 AFM patients had EV-D68 RNA detected by RT-PCR in their respiratory secretions, although EV-D68 was only detected in cerebrospinal fluid (CSF) from one 2014 AFM patient. Given previously described molecular and epidemiologic associations between EV-D68 and AFM, we sought to develop an animal model by screening seven EV-D68 strains for the ability to induce neurological disease in neonatal mice. We found that four EV-D68 strains from the 2014 outbreak (out of five tested) produced a paralytic disease in mice resembling human AFM. The remaining 2014 strain, as well as 1962 prototype EV-D68 strains Fermon and Rhyne, did not produce, or rarely produced, paralysis in mice. In-depth examination of the paralysis caused by a representative 2014 strain, MO/14-18947, revealed infectious virus, virion particles, and viral genome in the spinal cords of paralyzed mice. Paralysis was elicited in mice following intramuscular, intracerebral, intraperitoneal, and intranasal infection, in descending frequency, and was associated with infection and loss of motor neurons in the anterior horns of spinal cord segments corresponding to paralyzed limbs. Virus isolated from spinal cords of infected mice transmitted disease when injected into naïve mice, fulfilling Koch's postulates in this model. Finally, we found that EV-D68 immune sera, but not normal mouse sera, protected mice from development of paralysis and death when administered prior to viral challenge. These studies establish an experimental model to study EV-D68-induced myelitis and to better understand disease pathogenesis and develop potential therapies.
Journal Article
Single-molecule sequencing detection of N6-methyladenine in microbial reference materials
by
Chiu, Charles Y.
,
McIntyre, Alexa B. R.
,
Bezdan, Daniela
in
45/23
,
631/114/1305
,
631/208/212/2142
2019
The DNA base modification
N
6-methyladenine (m
6
A) is involved in many pathways related to the survival of bacteria and their interactions with hosts. Nanopore sequencing offers a new, portable method to detect base modifications. Here, we show that a neural network can improve m
6
A detection at trained sequence contexts compared to previously published methods using deviations between measured and expected current values as each adenine travels through a pore. The model, implemented as the mCaller software package, can be extended to detect known or confirm suspected methyltransferase target motifs based on predictions of methylation at untrained contexts. We use PacBio, Oxford Nanopore, methylated DNA immunoprecipitation sequencing (MeDIP-seq), and whole-genome bisulfite sequencing data to generate and orthogonally validate methylomes for eight microbial reference species. These well-characterized microbial references can serve as controls in the development and evaluation of future methods for the identification of base modifications from single-molecule sequencing data.
N
6-methyladenine is involved in many biological pathways for microbial survival and host interaction. Here the authors train a neural network for improved m
6
A detection in nanopore sequencing data and validate methylomes for a microbial reference community.
Journal Article
The B.1.427/1.429 (epsilon) SARS-CoV-2 variants are more virulent than ancestral B.1 (614G) in Syrian hamsters
by
Chiu, Charles Y.
,
van Doremalen, Neeltje
,
Holbrook, Myndi G.
in
Animal models
,
Animals
,
Antibodies
2022
As novel SARS-CoV-2 variants continue to emerge, it is critical that their potential to cause severe disease and evade vaccine-induced immunity is rapidly assessed in humans and studied in animal models. In early January 2021, a novel SARS-CoV-2 variant designated B.1.429 comprising 2 lineages, B.1.427 and B.1.429, was originally detected in California (CA) and it was shown to have enhanced infectivity in vitro and decreased antibody neutralization by plasma from convalescent patients and vaccine recipients. Here we examine the virulence, transmissibility, and susceptibility to pre-existing immunity for B 1.427 and B 1.429 in the Syrian hamster model. We find that both variants exhibit enhanced virulence as measured by increased body weight loss compared to hamsters infected with ancestral B.1 (614G), with B.1.429 causing the most marked body weight loss among the 3 variants. Faster dissemination from airways to parenchyma and more severe lung pathology at both early and late stages were also observed with B.1.429 infections relative to B.1. (614G) and B.1.427 infections. In addition, subgenomic viral RNA (sgRNA) levels were highest in oral swabs of hamsters infected with B.1.429, however sgRNA levels in lungs were similar in all three variants. This demonstrates that B.1.429 replicates to higher levels than ancestral B.1 (614G) or B.1.427 in the oropharynx but not in the lungs. In multi-virus in-vivo competition experiments, we found that B.1. (614G), epsilon (B.1.427/B.1.429) and gamma (P.1) dramatically outcompete alpha (B.1.1.7), beta (B.1.351) and zeta (P.2) in the lungs. In the nasal cavity, B.1. (614G), gamma, and epsilon dominate, but the highly infectious alpha variant also maintains a moderate size niche. We did not observe significant differences in airborne transmission efficiency among the B.1.427, B.1.429 and ancestral B.1 (614G) and WA-1 variants in hamsters. These results demonstrate enhanced virulence and high relative oropharyngeal replication of the epsilon (B.1.427/B.1.429) variant in Syrian hamsters compared to an ancestral B.1 (614G) variant.
Journal Article
Limited cross-variant immunity from SARS-CoV-2 Omicron without vaccination
2022
SARS-CoV-2 Delta and Omicron are globally relevant variants of concern. Although individuals infected with Delta are at risk of developing severe lung disease, infection with Omicron often causes milder symptoms, especially in vaccinated individuals
1
,
2
. The question arises of whether widespread Omicron infections could lead to future cross-variant protection, accelerating the end of the pandemic. Here we show that without vaccination, infection with Omicron induces a limited humoral immune response in mice and humans. Sera from mice overexpressing the human ACE2 receptor and infected with Omicron neutralize only Omicron, but not other variants of concern, whereas broader cross-variant neutralization was observed after WA1 and Delta infections. Unlike WA1 and Delta, Omicron replicates to low levels in the lungs and brains of infected animals, leading to mild disease with reduced expression of pro-inflammatory cytokines and diminished activation of lung-resident T cells. Sera from individuals who were unvaccinated and infected with Omicron show the same limited neutralization of only Omicron itself. By contrast, Omicron breakthrough infections induce overall higher neutralization titres against all variants of concern. Our results demonstrate that Omicron infection enhances pre-existing immunity elicited by vaccines but, on its own, may not confer broad protection against non-Omicron variants in unvaccinated individuals.
Infection with Omicron after vaccination produces cross-neutralizing antibodies to other variants of concern, whereas this induces a limited response to non-Omicron variants in unvaccinated individuals.
Journal Article
In vivo monoclonal antibody efficacy against SARS-CoV-2 variant strains
2021
Rapidly emerging SARS-CoV-2 variants jeopardize antibody-based countermeasures. Although cell culture experiments have demonstrated a loss of potency of several anti-spike neutralizing antibodies against variant strains of SARS-CoV-2
1
–
3
, the in vivo importance of these results remains uncertain. Here we report the in vitro and in vivo activity of a panel of monoclonal antibodies (mAbs), which correspond to many in advanced clinical development by Vir Biotechnology, AbbVie, AstraZeneca, Regeneron and Lilly, against SARS-CoV-2 variant viruses. Although some individual mAbs showed reduced or abrogated neutralizing activity in cell culture against B.1.351, B.1.1.28, B.1.617.1 and B.1.526 viruses with mutations at residue E484 of the spike protein, low prophylactic doses of mAb combinations protected against infection by many variants in K18-hACE2 transgenic mice, 129S2 immunocompetent mice and hamsters, without the emergence of resistance. Exceptions were LY-CoV555 monotherapy and LY-CoV555 and LY-CoV016 combination therapy, both of which lost all protective activity, and the combination of AbbVie 2B04 and 47D11, which showed a partial loss of activity. When administered after infection, higher doses of several mAb cocktails protected in vivo against viruses with a B.1.351 spike gene. Therefore, many—but not all—of the antibody products with Emergency Use Authorization should retain substantial efficacy against the prevailing variant strains of SARS-CoV-2.
Experiments in mouse and hamster models show that monoclonal antibody combinations, using antibodies that correspond to products in clinical development, largely retain their efficacy in protecting against currently prevailing variant strains of SARS-CoV-2.
Journal Article
Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification
2021
The COVID-19 pandemic caused by the SARS-CoV-2 virus motivates diverse diagnostic approaches due to the novel causative pathogen, incompletely understood clinical sequelae, and limited availability of testing resources. Given the variability in viral load across and within patients, absolute viral load quantification directly from crude lysate is important for diagnosis and surveillance. Here, we investigate the use of digital droplet PCR (ddPCR) for SARS-CoV-2 viral load measurement directly from crude lysate without nucleic acid purification. We demonstrate ddPCR accurately quantifies SARS-CoV-2 standards from purified RNA and multiple sample matrices, including commonly utilized universal transport medium (UTM). In addition, we find ddPCR functions robustly at low input viral copy numbers on nasopharyngeal swab specimens stored in UTM without upfront RNA extraction. We also show ddPCR, but not qPCR, from crude lysate shows high concordance with viral load measurements from purified RNA. Our data suggest ddPCR offers advantages to qPCR for SARS-CoV-2 detection with higher sensitivity and robustness when using crude lysate rather than purified RNA as input. More broadly, digital droplet assays provide a potential method for nucleic acid measurement and infectious disease diagnosis with limited sample processing, underscoring the utility of such techniques in laboratory medicine.
Journal Article
Actionable Diagnosis of Neuroleptospirosis by Next-Generation Sequencing
by
Sokolic, Robert
,
Candotti, Fabio
,
Miller, Steve
in
Adenosine Deaminase - deficiency
,
Adolescent
,
Agammaglobulinemia - complications
2014
The diagnosis of unusual pathogens causing serious infections may be difficult. In this case report, next-generation sequencing was used in real time to diagnose a leptospirosis infection in the central nervous system, directing successful targeted antimicrobial therapy.
More than half the cases of meningoencephalitis remain undiagnosed, despite extensive clinical laboratory testing.
1
–
4
Because more than 100 different infectious agents can cause encephalitis, establishing a diagnosis with the use of cultures, serologic tests, and pathogen-specific PCR assays can be difficult. Unbiased next-generation sequencing has the potential to revolutionize our ability to discover emerging pathogens, especially newly identified viruses.
5
–
8
However, the usefulness of next-generation sequencing for the diagnosis of infectious diseases in a clinically relevant timeframe is largely unexplored.
9
We used unbiased next-generation sequencing to identify a treatable, albeit rare, bacterial cause of meningoencephalitis. In this case, the . . .
Journal Article
Metagenomic prediction of antimicrobial resistance in critically ill patients with lower respiratory tract infections
by
Chiu, Charles Y.
,
Crawford, Emily
,
Neff, Norma
in
Acute respiratory distress syndrome
,
Antibiotics
,
Antimicrobial agents
2022
Background
Antimicrobial resistance (AMR) is rising at an alarming rate and complicating the management of infectious diseases including lower respiratory tract infections (LRTI). Metagenomic next-generation sequencing (mNGS) is a recently established method for culture-independent LRTI diagnosis, but its utility for predicting AMR has remained unclear. We aimed to assess the performance of mNGS for AMR prediction in bacterial LRTI and demonstrate proof of concept for epidemiological AMR surveillance and rapid AMR gene detection using Cas9 enrichment and nanopore sequencing.
Methods
We studied 88 patients with acute respiratory failure between 07/2013 and 9/2018, enrolled through a previous observational study of LRTI. Inclusion criteria were age ≥ 18, need for mechanical ventilation, and respiratory specimen collection within 72 h of intubation. Exclusion criteria were decline of study participation, unclear LRTI status, or no matched RNA and DNA mNGS data from a respiratory specimen. Patients with LRTI were identified by clinical adjudication. mNGS was performed on lower respiratory tract specimens. The primary outcome was mNGS performance for predicting phenotypic antimicrobial susceptibility and was assessed in patients with LRTI from culture-confirmed bacterial pathogens with clinical antimicrobial susceptibility testing (
n
= 27 patients,
n
= 32 pathogens). Secondary outcomes included the association between hospital exposure and AMR gene burden in the respiratory microbiome (
n
= 88 patients), and AMR gene detection using Cas9 targeted enrichment and nanopore sequencing (
n
= 10 patients).
Results
Compared to clinical antimicrobial susceptibility testing, the performance of respiratory mNGS for predicting AMR varied by pathogen, antimicrobial, and nucleic acid type sequenced. For gram-positive bacteria, a combination of RNA + DNA mNGS achieved a sensitivity of 70% (95% confidence interval (CI) 47–87%) and specificity of 95% (CI 85–99%). For gram-negative bacteria, sensitivity was 100% (CI 87–100%) and specificity 64% (CI 48–78%). Patients with hospital-onset LRTI had a greater AMR gene burden in their respiratory microbiome versus those with community-onset LRTI (
p
= 0.00030), or those without LRTI (
p
= 0.0024). We found that Cas9 targeted sequencing could enrich for low abundance AMR genes by > 2500-fold and enabled their rapid detection using a nanopore platform.
Conclusions
mNGS has utility for the detection and surveillance of resistant bacterial LRTI pathogens.
Journal Article