Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
99
result(s) for
"Choudhury, Robin P"
Sort by:
Heart regeneration and repair after myocardial infarction: translational opportunities for novel therapeutics
by
Choudhury, Robin P.
,
Cahill, Thomas J.
,
Riley, Paul R.
in
631/154
,
631/443/592/75
,
631/61/490
2017
Key Points
Endogenous regeneration seen in animal models provides a template for optimal repair of the human heart following myocardial infarction.
In the regenerating heart, new cardiomyocytes are produced by proliferation of the existing cardiomyocyte pool. Understanding and targeting the intrinsic mechanisms that regulate cardiomyocyte cell cycle re-entry could enable therapeutic regeneration in the human heart.
Repair is modulated by epicardial activation, neoangiogenesis, the immune response and the extracellular matrix. Biological insights from regenerative models, combined with use of high-throughput phenotypic screens and
in vivo
discovery approaches, are uncovering novel therapeutic targets and compounds to improve repair.
Regenerative strategies that emerge from increased understanding of cardiomyocyte lineage specification include transplantation of
in vitro
-produced cardiomyocytes and
in vivo
reprogramming of fibroblasts. Current efforts to improve engraftment, maturation and targeting will enable a next generation of clinical trials.
Distinct approaches are required for patients in the immediate post-myocardial infarction period and for those with chronic heart failure, and high-risk strategies should initially be targeted at patients with end-stage heart failure. Clinical trial design should be tailored to incorporate informed biological end points alongside functional end points.
Regeneration of the heart by cardiomyocyte reconstitution represents an attractive approach to treat heart failure. Here, Riley and colleagues discuss recent insights into the biology of heart regeneration and highlight emerging therapeutic regenerative strategies for heart failure. Challenges and considerations in the translation of regenerative therapies into the clinic are discussed.
Current therapies for heart failure after myocardial infarction are limited and non-curative. Although regenerative approaches are receiving significant attention, clinical efforts that involve transplantation of presumed stem and progenitor cells have largely failed to deliver. Recent studies of endogenous heart regeneration in model organisms, such as zebrafish and neonatal mice, are yielding mechanistic insights into the roles of cardiomyocyte proliferation, resident stem cell niches, neovascularization, the immune system and the extracellular matrix. These findings have revealed novel pathways that could be therapeutically targeted to stimulate repair following myocardial infarction and have provided lessons to guide future efforts towards heart regeneration through cellular reprogramming or cardiomyocyte transplantation.
Journal Article
Angiography-derived index of microcirculatory resistance as a novel, pressure-wire-free tool to assess coronary microcirculation in ST elevation myocardial infarction
by
De Maria Giovanni Luigi
,
Lucking, Andrew J
,
Choudhury, Robin P
in
Algorithms
,
Angiography
,
Heart
2020
Immediate assessment of coronary microcirculation during treatment of ST elevation myocardial infarction (STEMI) may facilitate patient stratification for targeted treatment algorithms. Use of pressure-wire to measure the index of microcirculatory resistance (IMR) is possible but has inevitable practical restrictions. We aimed to develop and validate angiography-derived index of microcirculatory resistance (IMRangio) as a novel and pressure-wire-free index to facilitate assessment of the coronary microcirculation. 45 STEMI patients treated with primary percutaneous coronary intervention (pPCI) were enrolled. Immediately before stenting and at completion of pPCI, IMR was measured within the infarct related artery (IRA). At the same time points, 2 angiographic views were acquired during hyperaemia to measure quantitative flow ratio (QFR) from which IMRangio was derived. In a subset of 15 patients both IMR and IMRangio were also measured in the non-IRA. Patients underwent cardiovascular magnetic resonance imaging (CMR) at 48 h for assessment of microvascular obstruction (MVO). IMRangio and IMR were significantly correlated (ρ: 0.85, p < 0.001). Both IMR and IMRangio were higher in the IRA rather than in the non-IRA (p = 0.01 and p = 0.006, respectively) and were higher in patients with evidence of clinically significant MVO (> 1.55% of left ventricular mass) (p = 0.03 and p = 0.005, respectively). Post-pPCI IMRangio presented and area under the curve (AUC) of 0.96 (CI95% 0.92–1.00, p < 0.001) for prediction of post-pPCI IMR > 40U and of 0.81 (CI95% 0.65–0.97, p < 0.001) for MVO > 1.55%. IMRangio is a promising tool for the assessment of coronary microcirculation. Assessment of IMR without the use of a pressure-wire may enable more rapid, convenient and cost-effective assessment of coronary microvascular function.
Journal Article
Non-contrast T1-mapping detects acute myocardial edema with high diagnostic accuracy: a comparison to T2-weighted cardiovascular magnetic resonance
by
Karamitsos, Theodoros D
,
Choudhury, Robin P
,
Piechnik, Stefan K
in
Acute Disease
,
Adult
,
Aged
2012
T2w-CMR is used widely to assess myocardial edema. Quantitative T1-mapping is also sensitive to changes in free water content. We hypothesized that T1-mapping would have a higher diagnostic performance in detecting acute edema than dark-blood and bright-blood T2w-CMR.
We investigated 21 controls (55 ± 13 years) and 21 patients (61 ± 10 years) with Takotsubo cardiomyopathy or acute regional myocardial edema without infarction. CMR performed within 7 days included cine, T1-mapping using ShMOLLI, dark-blood T2-STIR, bright-blood ACUT2E and LGE imaging. We analyzed wall motion, myocardial T1 values and T2 signal intensity (SI) ratio relative to both skeletal muscle and remote myocardium.
All patients had acute cardiac symptoms, increased Troponin I (0.15-36.80 ug/L) and acute wall motion abnormalities but no LGE. T1 was increased in patient segments with abnormal and normal wall motion compared to controls (1113 ± 94 ms, 1029 ± 59 ms and 944 ± 17 ms, respectively; p < 0.001). T2 SI ratio using STIR and ACUT2E was also increased in patient segments with abnormal and normal wall motion compared to controls (all p < 0.02). Receiver operator characteristics analysis showed that T1-mapping had a significantly larger area-under-the-curve (AUC = 0.94) compared to T2-weighted methods, whether the reference ROI was skeletal muscle or remote myocardium (AUC = 0.58-0.89; p < 0.03). A T1 value of greater than 990 ms most optimally differentiated segments affected by edema from normal segments at 1.5 T, with a sensitivity and specificity of 92 %.
Non-contrast T1-mapping using ShMOLLI is a novel method for objectively detecting myocardial edema with a high diagnostic performance. T1-mapping may serve as a complementary technique to T2-weighted imaging for assessing myocardial edema in ischemic and non-ischemic heart disease, such as quantifying area-at-risk and diagnosing myocarditis.
Journal Article
Cardiovascular magnetic resonance by non contrast T1-mapping allows assessment of severity of injury in acute myocardial infarction
by
Karamitsos, Theodoros D
,
Si, Quang Le
,
Choudhury, Robin P
in
Analysis of Variance
,
Angiology
,
Angioplasty, Balloon, Coronary
2012
Current cardiovascular magnetic resonance (CMR) methods, such as late gadolinium enhancement (LGE) and oedema imaging (T2W) used to depict myocardial ischemia, have limitations. Novel quantitative T1-mapping techniques have the potential to further characterize the components of ischemic injury. In patients with myocardial infarction (MI) we sought to investigate whether state-of the art pre-contrast T1-mapping (1) detects acute myocardial injury, (2) allows for quantification of the severity of damage when compared to standard techniques such as LGE and T2W, and (3) has the ability to predict long term functional recovery.
3T CMR including T2W, T1-mapping and LGE was performed in 41 patients [of these, 78% were ST elevation MI (STEMI)] with acute MI at 12-48 hour after chest pain onset and at 6 months (6M). Patients with STEMI underwent primary PCI prior to CMR. Assessment of acute regional wall motion abnormalities, acute segmental damaged fraction by T2W and LGE and mean segmental T1 values was performed on matching short axis slices. LGE and improvement in regional wall motion at 6M were also obtained.
We found that the variability of T1 measurements was significantly lower compared to T2W and that, while the diagnostic performance of acute T1-mapping for detecting myocardial injury was at least as good as that of T2W-CMR in STEMI patients, it was superior to T2W imaging in NSTEMI. There was a significant relationship between the segmental damaged fraction assessed by either by LGE or T2W, and mean segmental T1 values (P < 0.01). The index of salvaged myocardium derived by acute T1-mapping and 6M LGE was not different to the one derived from T2W (P = 0.88). Furthermore, the likelihood of improvement of segmental function at 6M decreased progressively as acute T1 values increased (P < 0.0004).
In acute MI, pre-contrast T1-mapping allows assessment of the extent of myocardial damage. T1-mapping might become an important complementary technique to LGE and T2W for identification of reversible myocardial injury and prediction of functional recovery in acute MI.
Journal Article
Native T1-mapping detects the location, extent and patterns of acute myocarditis without the need for gadolinium contrast agents
by
Karamitsos, Theodoros D
,
Choudhury, Robin P
,
Piechnik, Stefan K
in
Abnormalities
,
Acute Disease
,
Adult
2014
Background
Acute myocarditis can be diagnosed on cardiovascular magnetic resonance (CMR) using multiple techniques, including late gadolinium enhancement (LGE) imaging, which requires contrast administration. Native T1-mapping is significantly more sensitive than LGE and conventional T2-weighted (T2W) imaging in detecting myocarditis. The aims of this study were to demonstrate how to display the non-ischemic patterns of injury and to quantify myocardial involvement in acute myocarditis without the need for contrast agents, using topographic T1-maps and incremental T1 thresholds.
Methods
We studied 60 patients with suspected acute myocarditis (median 3 days from presentation) and 50 controls using CMR (1.5 T), including: (1) dark-blood T2W imaging; >(2) native T1-mapping (ShMOLLI); (3) LGE. Analysis included: (1) global myocardial T2 signal intensity (SI) ratio compared to skeletal muscle; (2) myocardial T1 times; (3) areas of injury by T2W, T1-mapping and LGE.
Results
Compared to controls, patients had more edema (global myocardial T2 SI ratio 1.71 ± 0.27 vs.1.56 ± 0.15), higher mean myocardial T1 (1011 ± 64 ms vs. 946 ± 23 ms) and more areas of injury as detected by T2W (median 5% vs. 0%), T1 (median 32% vs. 0.7%) and LGE (median 11% vs. 0%); all p < 0.001. A threshold of T1 > 990 ms (sensitivity 90%, specificity 88%) detected significantly larger areas of involvement than T2W and LGE imaging in patients, and additional areas of injury when T2W and LGE were negative. T1-mapping significantly improved the diagnostic confidence in an additional 30% of cases when at least one of the conventional methods (T2W, LGE) failed to identify any areas of abnormality. Using incremental thresholds, T1-mapping can display the non-ischemic patterns of injury typical of myocarditis.
Conclusion
Native T1-mapping can display the typical non-ischemic patterns in acute myocarditis, similar to LGE imaging but without the need for contrast agents. In addition, T1-mapping offers significant incremental diagnostic value, detecting additional areas of myocardial involvement beyond T2W and LGE imaging and identified extra cases when these conventional methods failed to identify abnormalities. In the future, it may be possible to perform gadolinium-free CMR using cine and T1-mapping for tissue characterization and may be particularly useful for patients in whom gadolinium contrast is contraindicated.
Journal Article
Wnt signaling enhances macrophage responses to IL-4 and promotes resolution of atherosclerosis
by
Sansbury, Brian E
,
Fisher, Edward A
,
Choudhury, Robin P
in
Animals
,
Anticholesteremic agents
,
Arteriosclerosis
2021
Atherosclerosis is a disease of chronic inflammation. We investigated the roles of the cytokines IL-4 and IL-13, the classical activators of STAT6, in the resolution of atherosclerosis inflammation. Using
Il4
-/-
Il13
-/-
mice, resolution was impaired, and in control mice, in both progressing and resolving plaques, levels of IL-4 were stably low and IL-13 was undetectable. This suggested that IL-4 is required for atherosclerosis resolution, but collaborates with other factors. We had observed increased Wnt signaling in macrophages in resolving plaques, and human genetic data from others showed that a loss-of-function Wnt mutation was associated with premature atherosclerosis. We now find an inverse association between activation of Wnt signaling and disease severity in mice and humans. Wnt enhanced the expression of inflammation resolving factors after treatment with plaque-relevant low concentrations of IL-4. Mechanistically, activation of the Wnt pathway following lipid lowering potentiates IL-4 responsiveness in macrophages via a PGE
2
/STAT3 axis.
Journal Article
Inflammatory processes in cardiovascular disease: a route to targeted therapies
by
Chai, Joshua T.
,
Fisher, Edward A.
,
Choudhury, Robin P.
in
692/4019/592/75/2/1674
,
692/4019/592/75/593/15
,
692/4019/592/75/593/2100
2017
Key Points
Inflammation and its failure to resolve are firmly established as central to the development and complications of several cardiovascular diseases
Targeting of inflammatory processes in experimental models has been demonstrated to be beneficial in attenuating myocardial and arterial injury, reducing disease progression, and promoting healing, but clinical translation has been disappointing
Current tools to measure 'inflammation' are nonspecific and represent downstream sequelae of biological processes, but provide little insight into disease state, site, or activation pathways
Contemporary molecular techniques (such as proteomics and gene-expression analysis) improve our ability to characterize underlying biological processes, and identify activation pathways as biomarkers and as a basis to develop new therapeutics
Noninvasive imaging tools enable the identification of activation of specific pathways and their sites, and can be used to monitor response to therapy
Inflammatory processes are central to the development and complications of atherosclerosis and acute myocardial infarction. In this Review, Ruparelia
et al
. summarize the inflammatory pathways involved in these cardiovascular diseases, highlight contemporary techniques to characterize and quantify inflammation, and consider how they might be used to guide specific treatments.
Inflammatory processes are firmly established as central to the development and complications of cardiovascular diseases. Elevated levels of inflammatory markers have been shown to be predictive of future cardiovascular events. The specific targeting of these processes in experimental models has been shown to attenuate myocardial and arterial injury, reduce disease progression, and promote healing. However, the translation of these observations and the demonstration of clear efficacy in clinical practice have been disappointing. A major limitation might be that tools currently used to measure 'inflammation' are insufficiently precise and do not provide information about disease site and activity, or discriminate between functionally important activation pathways. The challenge, therefore, is to make measures of inflammation that are more meaningful, and which can guide specific targeted therapies. In this Review, we consider the roles of inflammatory processes in the related pathologies of atherosclerosis and acute myocardial infarction, by providing an evaluation of the known and emerging inflammatory pathways. We highlight contemporary techniques to characterize and quantify inflammation, and consider how they might be used to guide specific treatments. Finally, we discuss emerging opportunities in the field, including their current limitations and challenges that are the focus of ongoing study.
Journal Article
Molecular MRI enables early and sensitive detection of brain metastases
by
Serres, Sébastien
,
Khrapitchev, Alexandre
,
Bristow, Claire
in
animal models
,
Animals
,
Biological Sciences
2012
Metastasis to the brain is a leading cause of cancer mortality. The current diagnostic method of gadolinium-enhanced MRI is sensitive only to larger tumors, when therapeutic options are limited. Earlier detection of brain metastases is critical for improved treatment. We have developed a targeted MRI contrast agent based on microparticles of iron oxide that enables imaging of endothelial vascular cell adhesion molecule-1 (VCAM-1). Our objectives here were to determine whether VCAM-1 is up-regulated on vessels associated with brain metastases, and if so, whether VCAM-1–targeted MRI enables early detection of these tumors. Early up-regulation of cerebrovascular VCAM-1 expression was evident on tumor-associated vessels in two separate murine models of brain metastasis. Metastases were detectable in vivo using VCAM-1–targeted MRI 5 d after induction (<1,000 cells). At clinical imaging resolutions, this finding is likely to translate to detection at tumor volumes two to three orders of magnitude smaller (0.3–3 x 105 cells) than those volumes detectable clinically (107–108 cells). VCAM-1 expression detected by MRI increased significantly (P < 0.0001) with tumor progression, and tumors showed no gadolinium enhancement. Importantly, expression of VCAM-1 was shown in human brain tissue containing both established metastases and micrometastases. Translation of this approach to the clinic could increase therapeutic options and change clinical management in a substantial number of cancer patients.
Journal Article
Extracellular Vesicles in Innate Immune Cell Programming
2021
Extracellular vesicles (EV) are a heterogeneous group of bilipid-enclosed envelopes that carry proteins, metabolites, RNA, DNA and lipids from their parent cell of origin. They mediate cellular communication to other cells in local tissue microenvironments and across organ systems. EV size, number and their biologically active cargo are often altered in response to pathological processes, including infection, cancer, cardiovascular diseases and in response to metabolic perturbations such as obesity and diabetes, which also have a strong inflammatory component. Here, we discuss the broad repertoire of EV produced by neutrophils, monocytes, macrophages, their precursor hematopoietic stem cells and discuss their effects on the innate immune system. We seek to understand the immunomodulatory properties of EV in cellular programming, which impacts innate immune cell differentiation and function. We further explore the possibilities of using EV as immune targeting vectors, for the modulation of the innate immune response, e.g., for tissue preservation during sterile injury such as myocardial infarction or to promote tissue resolution of inflammation and potentially tissue regeneration and repair.
Journal Article
Stabilisation of HIF signalling in the mouse epicardium extends embryonic potential and neonatal heart regeneration
2025
In humans, new-born infants can regenerate their heart during early life. This is modelled in the mouse, where regenerative capacity is maintained for the first week after birth but lost thereafter. Reactivation of this process holds great therapeutic potential; however, the molecular pathways that might be targeted to extend neonatal regeneration remain elusive. Here, we explored a role for hypoxia and HIF signalling on the regulation of epicardial activity in the developing mouse heart and in modulating the response to injury. Hypoxic regions were found in the epicardium from mid-gestation, associating with HIF-1α and HIF-2α, and expression of the epicardial master regulator Wilms’ tumour 1 (WT1). Epicardial deletion of Hif1α reduced WT1 levels, leading to impaired coronary vasculature. Targeting of the HIF degradation enzyme PHD, through pharmacological inhibition with a clinically approved drug or epicardial-specific genetic deletion of Egln1 , stabilised HIF and promoted WT1 activity ex vivo. Finally, a combination of genetic and pharmacological stabilisation of HIF during neonatal heart injury led to prolonged epicardial activation, preservation of myocardium, augmented infarct resolution and preserved function beyond the 7-day regenerative window. These findings suggest modulation of HIF signalling extends epicardial activation to maintain myocardial survival beyond the neonatal regenerative window and may represent a viable strategy for treating ischaemic heart disease.
Journal Article