Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
39 result(s) for "Cross, Molly"
Sort by:
Linking knowledge to action: the role of boundary spanners in translating ecology
One of the most effective ways to foster the co-production of ecological knowledge by producers and users, as well as encouraging dialogue between them, is to cultivate individuals or organizations working at and managing the boundary between the two groups. Such \"boundary spanners\" are critical to ensuring scientific salience, credibility, and legitimacy, yet they remain relatively underused in ecology. We summarize some of the major roles of boundary spanners in translational ecology, and suggest that effectiveness in translating ecological information depends on several key factors. These include organizational and individual commitment to boundary spanning over the long term; development of useful, co-produced products and tools that can subsequently assume boundary-spanning roles of their own; dual-accountability frameworks that involve both science providers and users; and identification, training, and retention of science translators who possess a suite of professional skills and individual traits that are rare in scientific circles.
Preparing for and managing change: climate adaptation for biodiversity and ecosystems
The emerging field of climate-change adaptation has experienced a dramatic increase in attention as the impacts of climate change on biodiversity and ecosystems have become more evident. Preparing for and addressing these changes are now prominent themes in conservation and natural resource policy and practice. Adaptation increasingly is viewed as a way of managing change, rather than just maintaining existing conditions. There is also increasing recognition of the need not only to adjust management strategies in light of climate shifts, but to reassess and, as needed, modify underlying conservation goals. Major advances in the development of climate-adaptation principles, strategies, and planning processes have occurred over the past few years, although implementation of adaptation plans continues to lag. With ecosystems expected to undergo continuing climate-mediated changes for years to come, adaptation can best be thought of as an ongoing process, rather than as a fixed endpoint.
Temporal changes in avian community composition in lowland conifer habitats at the southern edge of the boreal zone in the Adirondack Park, NY
Climate change represents one of the most significant threats to human and wildlife communities on the planet. Populations at range margins or transitions between biomes can be particularly instructive for observing changes in biological communities that may be driven by climate change. Avian communities in lowland boreal habitats in the Adirondack Park, located at the North American boreal-temperate ecotone, have been the focus of long-term monitoring efforts since 2007. By documenting long-term changes in community structure and composition, such datasets provide an opportunity to understand how boreal species are responding differently to climate change, and which habitat characteristics may be best able to retain boreal avian communities. We examined three specific questions in order to address how well current biological communities in Adirondack boreal wetland habitats are being maintained in a changing climate: (1) how do trends in occupancy vary across species, and what guilds or characteristics are associated with increasing or decreasing occupancy? (2) how is avian community composition changing differently across sites, and (3) what distinguishes sites which are retaining boreal birds to a higher degree than other sites? Our analysis revealed that (1) boreal species appear to exhibit the largest changes in occupancy among our study locations as compared to the larger avian community, (2) dynamics of community change are not uniform across sites and habitat structure may play an important role in driving observed changes, and (3) the particular characteristics of large open peatlands may allow them to serve as refugia for boreal species in the context of climate change.
Relative contribution of climate and non-climate drivers in determining dynamic rates of boreal birds at the edge of their range
The Adirondack Park in New York State contains a unique and limited distribution of boreal ecosystem types, providing habitat for a number of birds at the southern edge of their range. Species are projected to shift poleward in a warming climate, and the limited boreal forest of the Adirondacks is expected to undergo significant change in response to rising temperatures and changing precipitation patterns. Here we expand upon a previous analysis to examine changes in occupancy patterns for eight species of boreal birds over a decade (2007-2016), and we assess the relative contribution of climate and non-climate drivers in determining colonization and extinction rates. Our analysis identifies patterns of declining occupancy for six of eight species, including some declines which appear to have become more pronounced since a prior analysis. Although non-climate drivers such as wetland area, connectivity, and human footprint continue to influence colonization and extinction rates, we find that for most species, occupancy patterns are best described by climate drivers. We modeled both average and annual temperature and precipitation characteristics and find stronger support for species' responses to average climate conditions, rather than interannual climate variability. In general, boreal birds appear most likely to colonize sites that have lower levels of precipitation and a high degree of connectivity, and they tend to persist in sites that are warmer in the breeding season and have low and less variable precipitation in the winter. It is likely that these responses reflect interactions between broader habitat conditions and temperature and precipitation variables. Indirect climate influences as mediated through altered species interactions may also be important in this context. Given climate change predictions for both temperature and precipitation, it is likely that habitat structural changes over the long term may alter these relationships in the future.
Biodiversity in a changing climate: a synthesis of current and projected trends in the US
This paper provides a synthesis of the recent literature describing how global biodiversity is being affected by climate change and is projected to respond in the future. Current studies reinforce earlier findings of major climate-change-related impacts on biological systems and document new, more subtle after-effects. For example, many species are shifting their distributions and phenologies at faster rates than were recorded just a few years ago; however, responses are not uniform across species. Shifts have been idiosyncratic and in some cases counterintuitive, promoting new community compositions and altering biotic interactions. Although genetic diversity enhances species' potential to respond to variable conditions, climate change may outpace intrinsic adaptive capacities and increase the relative vulnerabilities of many organisms. Developing effective adaptation strategies for biodiversity conservation will not only require flexible decision-making and management approaches that account for uncertainties in climate projections and ecological responses but will also necessitate coordinated monitoring efforts.
Tackling the Science Usability Gap in a Warming World: Co-Producing Useable Climate Information for Natural Resource Management
Developing scientific information that is used in policy and practice has been a longstanding challenge in many sectors and disciplines, including climate change adaptation for natural resource management. One approach to address this problem encourages scientists and decision-makers to co-produce usable information collaboratively. Researchers have proposed general principles for climate science co-production, yet few studies have applied and evaluated these principles in practice. In this study, climate change researchers and natural resource managers co-produced climate-related knowledge that was directly relevant for on-going habitat management planning. We documented our methods and assessed how and to what extent the process led to the near-term use of co-produced information, while also identifying salient information needs for future research. The co-production process resulted in: 1) an updated natural resource management plan that substantially differed from the former plan in how it addressed climate change, 2) increased understanding of climate change, its impacts, and management responses among agency staff, and 3) a prioritized list of climate-related information needs that would be useful for management decision-making. We found that having a boundary spanner—an intermediary with relevant science and management expertise that enables exchange between knowledge producers and users—guide the co-production process was critical to achieving outcomes. Central to the boundary spanner’s role were a range of characteristics and skills, such as knowledge of relevant science, familiarity with management issues, comfort translating science into practice, and an ability to facilitate climate-informed planning. By describing specific co-production methods and evaluating their effectiveness, we offer recommendations for others looking to co-produce climate change information to use in natural resource management planning and implementation.
R–R–T (resistance–resilience–transformation) typology reveals differential conservation approaches across ecosystems and time
Conservation practices during the first decade of the millennium predominantly focused on resisting changes and maintaining historical or current conditions, but ever-increasing impacts from climate change have highlighted the need for transformative action. However, little empirical evidence exists on what kinds of conservation actions aimed specifically at climate change adaptation are being implemented in practice, let alone how transformative these actions are. In response, we propose and trial a novel typology—the R–R–T scale, which improves on existing concepts of Resistance, Resilience, and Transformation—that enables the practical application of contested terms and the empirical assessment of whether and to what extent a shift toward transformative action is occurring. When applying the R–R–T scale to a case study of 104 adaptation projects funded since 2011, we find a trend towards transformation that varies across ecosystems. Our results reveal that perceptions about the acceptance of novel interventions in principle are beginning to be expressed in practice.Guillaume Peterson St-Laurent et al. introduce the R–R-T (Resistance-Resilience-Transformation) conservation typology that enables the empirical assessment of whether and to what extent a management shift toward transformative action is occurring. They apply the R–R-T scale to 104 adaptation projects and find a shift towards transformation over time and differential responses across ecosystems, with more transformative actions applied in forested ecosystems.
A flexible data‐driven approach to co‐producing drought vulnerability assessments
Intensifying weather events are key characteristics of climate change that are fundamentally changing ecological disturbance regimes. Intensifying drought is a particular threat to species, ecosystems, and ecosystem services worldwide. Proactive drought adaptation measures are acutely needed, but without a better understanding of drought vulnerability at the appropriate scale and geography, such measures may not be effective, or even anticipated as potential options. A recent conceptual framework for ecological drought aligns a holistic suite of potential drivers with the key components of climate change vulnerability (exposure, sensitivity, and adaptive capacity). We leverage the ecological drought framework and components of vulnerability to introduce a six‐step process for developing a drought vulnerability assessment (DVA) that (1) is place‐based and avoids mismatches between assessment geography and management action, (2) uses existing empirical datasets and leverages machine learning techniques and remotely sensed data from a recent drought, (3) emphasizes the inclusion of stakeholders and the importance of data visualization and science communication, and (4) is flexible and adaptable to a wide range of planning contexts. We illustrate the DVA process with a case study for forested watersheds in the Missouri Headwaters (MH), Montana, USA, that is focused on the impact of an early 2000s drought event on forest health. We show how the DVA provides insights on drought vulnerability that are helpful starting points for co‐developing region‐specific management actions to prepare for the next drought, including strategies to enhance ecologically available water, reduce competition for water, promote ecosystem persistence under drought conditions, and prioritize sites for forest restoration, transition, or protection. The work described here provides a model for developing a DVA in other places that, when used in a participatory adaptation planning process, supports the implementation of effective adaptation strategies.
Similarities and Differences in Barriers and Opportunities Affecting Climate Change Adaptation Action in Four North American Landscapes
Climate change presents a complex set of challenges for natural resource managers across North America. Despite recognition that climate change poses serious threats to species, ecosystems, and human communities, implementation of adaptation measures is not yet happening on a broad scale. Among different regions, a range of climate change trajectories, varying political contexts, and diverse social and ecological systems generate a myriad of factors that can affect progress on climate change adaptation implementation. In order to understand the general versus site-specific nature of barriers and opportunities influencing implementation, we surveyed and interviewed practitioners, decision-makers, and scientists involved in natural resource management in four different North American regions, northern Ontario (Canada), the Adirondack State Park (US), Arctic Alaska (US), and the Transboundary Rocky Mountains (US and Canada). Common barriers among regions related to a lack of political support and financial resources, as well as challenges related to translating complex and interacting effects of climate change into management actions. Opportunities shared among regions related to collaboration, funding, and the presence of strong leadership. These commonalities indicate the importance of cross-site learning about ways to leverage opportunities and address adaptation barriers; however, regional variations also suggest that adaptation efforts will need to be tailored to fit specific ecological, political, social and economic contexts. Comparative findings on the similarities and differences in barriers and opportunities, as well as rankings of barriers and opportunities by region, offers important contextual insights into how to further refine efforts to advance adaptation actions in those regions.