Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Dandawate, Prasad"
Sort by:
Suppressing STAT5 signaling affects osteosarcoma growth and stemness
2020
Osteosarcoma (OS) is the most common primary bone tumor that primarily affects children and adolescents. Studies suggested that dysregulation JAK/STAT signaling promotes the development of OS. Cells treated with pimozide, a STAT5 inhibitor suppressed proliferation and colony formation and induced sub G0/G1 cell cycle arrest and apoptosis. There was a reduction in cyclin D1 and CDK2 expression and Rb phosphorylation, and activation of Caspase-3 and PARP cleavage. In addition, pimozide suppressed the formation of 3-dimensional osteospheres and growth of the cells in the Tumor in a Dish lung organoid system. Furthermore, there was a reduction in expression of cancer stem cell marker proteins DCLK1, CD44, CD133, Oct-4, and ABCG2. More importantly, it was the short form of DCLK1 that was upregulated in osteospheres, which was suppressed in response to pimozide. We further confirmed by flow cytometry a reduction in DCLK1+ cells. Moreover, pimozide inhibits the phosphorylation of STAT5, STAT3, and ERK in OS cells. Molecular docking studies suggest that pimozide interacts with STAT5A and STAT5B with binding energies of −8.4 and −6.4 Kcal/mol, respectively. Binding was confirmed by cellular thermal shift assay. To further understand the role of STAT5, we knocked down the two isoforms using specific siRNAs. While knockdown of the proteins did not affect the cells, knockdown of STAT5B reduced pimozide-induced necrosis and further enhanced late apoptosis. To determine the effect of pimozide on tumor growth in vivo, we administered pimozide intraperitoneally at a dose of 10 mg/kg BW every day for 21 days in mice carrying KHOS/NP tumor xenografts. Pimozide treatment significantly suppressed xenograft growth. Western blot and immunohistochemistry analyses also demonstrated significant inhibition of stem cell marker proteins. Together, these data suggest that pimozide treatment suppresses OS growth by targeting both proliferating cells and stem cells at least in part by inhibiting the STAT5 signaling pathway.
Journal Article
Natural compounds targeting major cell signaling pathways: a novel paradigm for osteosarcoma therapy
by
Anant, Shrikant
,
Kaushik, Gaurav
,
Angulo, Pablo
in
Adolescent
,
Biological Products - pharmacology
,
Bone cancer
2017
Osteosarcoma is the most common primary bone cancer affecting children and adolescents worldwide. Despite an incidence of three cases per million annually, it accounts for an inordinate amount of morbidity and mortality. While the use of chemotherapy (cisplatin, doxorubicin, and methotrexate) in the last century initially resulted in marginal improvement in survival over surgery alone, survival has not improved further in the past four decades. Patients with metastatic osteosarcoma have an especially poor prognosis, with only 30% overall survival. Hence, there is a substantial need for new therapies. The inability to control the metastatic progression of this localized cancer stems from a lack of complete knowledge of the biology of osteosarcoma. Consequently, there has been an aggressive undertaking of scientific investigation of various signaling pathways that could be instrumental in understanding the pathogenesis of osteosarcoma. Here, we review these cancer signaling pathways, including Notch, Wnt, Hedgehog, phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/AKT, and JAK/STAT, and their specific role in osteosarcoma. In addition, we highlight numerous natural compounds that have been documented to target these pathways effectively, including curcumin, diallyl trisulfide, resveratrol, apigenin, cyclopamine, and sulforaphane. We elucidate through references that these natural compounds can induce cancer signaling pathway manipulation and possibly facilitate new treatment modalities for osteosarcoma.
Journal Article
Cucurbitacin B and I inhibits colon cancer growth by targeting the Notch signaling pathway
2020
Cancer stem cells (CSCs) have the ability to self-renew and induce drug resistance and recurrence in colorectal cancer (CRC). As current chemotherapy doesn’t eliminate CSCs completely, there is a need to identify novel agents to target them. We investigated the effects of cucurbitacin B (C-B) or I (C-I), a natural compound that exists in edible plants (bitter melons, cucumbers, pumpkins and zucchini), against CRC. C-B or C-I inhibited proliferation, clonogenicity, induced G
2
/M cell-cycle arrest and caspase-mediated-apoptosis of CRC cells. C-B or C-I suppressed colonosphere formation and inhibited expression of CD44, DCLK1 and LGR5. These compounds inhibited notch signaling by reducing the expression of Notch 1–4 receptors, their ligands (Jagged 1-2, DLL1,3,4), γ-secretase complex proteins (Presenilin 1, Nicastrin), and downstream target Hes-1. Molecular docking showed that C-B or C-I binds to the ankyrin domain of Notch receptor, which was confirmed using the cellular thermal shift assay. Finally, C-B or C-I inhibited tumor xenograft growth in nude mice and decreased the expression of CSC-markers and notch signaling proteins in tumor tissues. Together, our study suggests that C-B and C-I inhibit colon cancer growth by inhibiting Notch signaling pathway.
Journal Article
New 4,5-Diarylimidazol-2-ylidene–iodidogold(I) Complexes with High Activity against Esophageal Adenocarcinoma Cells
by
Ghosh, Hindole
,
Schobert, Rainer
,
Hörner, Gerald
in
Adenocarcinoma
,
Adenocarcinoma - drug therapy
,
Antifungal agents
2023
Inspired by the vascular-disrupting agent combretastatin A-4 and recently published anticancer active N-heterocyclic carbene (NHC) complexes of Au(I), a series of new iodidogold(I)–NHC complexes was synthesized and characterized. The iodidogold(I) complexes were synthesized by a route involving van Leusen imidazole formation and N-alkylation, followed by complexation with Ag2O, transmetalation with chloro(dimethylsulfide)gold(I) [Au(DMS)Cl], and anion exchange with KI. The target complexes were characterized by IR spectroscopy, 1H and 13C NMR spectroscopy, and mass spectrometry. The structure of 6c was validated via single-crystal X-ray diffraction. A preliminary anticancer screening of the complexes using two esophageal adenocarcinoma cell lines showed promising nanomolar activities for certain iodidogold(I) complexes accompanied with apoptosis induction, as well as c-Myc and cyclin D1 suppression in esophageal adenocarcinoma cells treated with the most promising derivative 6b.
Journal Article
Inclusion Complex of Novel Curcumin Analogue CDF and β-Cyclodextrin (1:2) and Its Enhanced In Vivo Anticancer Activity Against Pancreatic Cancer
by
Dumhe-Klaire, Anne Catherine
,
Ahmad, Aamir
,
Jamadar, Abeda
in
Animals
,
Antineoplastic Agents - administration & dosage
,
Antineoplastic Agents - chemistry
2012
Purpose
Several formulations have been proposed to improve the systemic delivery of novel cancer therapeutic compounds, including cyclodextrin derivatives. We aimed to synthesize and characterize of CDF-β-cyclodextrin inclusion complex (1:2) (CDFCD).
Methods
The compound was characterized by Fourier transform infrared, differential scanning calorimetry, powder X-ray diffraction studies, H1 & C13 NMR studies and scanning electron microscopic analysis. Its activity was tested against multiple cancer cell lines, and
in vivo
bioavailability was checked.
Results
CDF-β-cyclodextrin was found to lower IC
50
value by half when tested against multiple cancer cell lines. It preferentially accumulated in the pancreas, where levels of CDF-β-cyclodextrin in mice were 10 times higher than in serum, following intravenous administration of an aqueous CDF-β-cyclodextrin preparation.
Conclusions
Novel curcumin analog CDF preferentially accumulates in the pancreas, leading to its potent anticancer activity against pancreatic cancer cells. Synthesis of such CDF-β-cyclodextrin self-assembly is an effective strategy to enhance its bioavailability and tissue distribution, warranting further evaluation for CDF delivery in clinical settings for treatment of human malignancies.
Journal Article
Anticancer Activity of Novel Difluorinated Curcumin Analog and Its Inclusion Complex with 2-Hydroxypropyl-β-Cyclodextrin against Pancreatic Cancer
by
Anant, Shrikant
,
VanSaun, Michael
,
Padhye, Subhash B.
in
2-Hydroxypropyl-beta-cyclodextrin - pharmacology
,
2-Hydroxypropyl-beta-cyclodextrin - therapeutic use
,
Bioavailability
2023
Pancreatic ductal adenocarcinoma (PDAC) is the primary reason for cancer-related deaths in the US. Genetic mutations, drug resistance, the involvement of multiple signaling pathways, cancer stem cells (CSCs), and desmoplastic stroma, which hinders drug penetrance, contribute to poor chemotherapeutic efficacy. Hence, there is a need to identify novel drugs with improved delivery to improve treatment outcomes. Curcumin is one such compound that can inhibit multiple signaling pathways and CSCs. However, curcumin’s clinical applicability for treating PDAC is limited because of its poor solubility in water and metabolic instability. Hence, we developed a difluorinated curcumin (CDF) analog that accumulates selectively in the pancreas and inhibits PDAC growth in vitro and in vivo. In the present work, we developed its 2-hydroxy-propyl-β-cyclodextrin (HCD) inclusion complex to increase its water solubility and hydrolytic stability. The CDFHCD inclusion complex was characterized by spectroscopic, thermal, and microscopic techniques. The inclusion complex exhibited increased aqueous solubility, hydrolytic stability, and antiproliferative activity compared to parent CDF. Moreover, CDF and CDFHCD inhibited colony and spheroid formation, and induced cell cycle and apoptosis in PDAC cell lines. Hence, CDFHCD self-assembly is an efficient approach to increase water solubility and anticancer therapeutic efficacy, which now warrants advancement towards a clinical proof of concept in PDAC patients.
Journal Article
Fluorinated and N-Acryloyl-Modified 3,5-Di(E)-benzylidenepiperidin-4-one Curcuminoids for the Treatment of Pancreatic Carcinoma
by
Biersack, Bernhard
,
Ghosh, Hindole
,
Schobert, Rainer
in
acryl amide
,
anticancer agents
,
Cancer therapies
2023
Pancreatic carcinoma is a cancer disease with high mortality. Thus, new and efficient treatments for this disease are badly needed. Curcumin has previously shown promising effects in pancreatic cancer patients; however, this natural compound suffers from inadequate efficacy and bioavailability, preventing its clinical approval. The synthetic curcuminoid EF24 was developed with activities superior to curcumin against various cancer types. In this study, a series of analogs of EF24 were investigated for anticancer effects on pancreatic carcinoma models. A distinct activity boost was achieved by straightforward N-acrylation of EF24 analogs, in particular, of compounds bearing 3-fluoro-4-methoxybenzylidene, 3,4-difluorobenzylidene, and 4-trifluoromethylbenzylidene moieties, while no improvement was seen for N-acryloyl-modified EF24. Apoptosis induction and suppression of phospho-STAT3 levels were determined, the latter corroborated by docking of active curcuminoids into STAT3. Hence, promising new clues for the development of efficient and superior curcuminoids as valuable treatment options for one of the most lethal cancer diseases were discovered in this study.
Journal Article
Acid ceramidase-1 (ASAH1/aCDase) an important for anticancer drug discovery: a review
by
Pawar, Seemarani M.
,
Dandawate, Prasad
,
Chitre, Trupti
in
Acid ceramidase (AC)
,
Apoptosis
,
Autophagy
2025
Background
Dysregulated sphingolipid metabolism has emerged as a major pathway in multiple human cancers. Sphingolipids are major structural components of cell membranes, playing key roles in maintaining structural integrity, fluidity, and barrier function. Sphingolipids are diverse and involved in regulating growth, the cell cycle, cell motility, adhesion, migration, and more by influencing cell signaling functions. The major sphingolipids include ceramides, sphingomyelins, cerebrosides, and gangliosides. De novo sphingolipid synthesis generates ceramide, a central hub for this pathway with several possible fates. Ceramide can be phosphorylated to ceramide-1-phosphate by ceramide kinase or converted to sphingomyelin by sphingomyelin synthase. Furthermore, ceramide may be degraded by ceramidase to form sphingosine, which can then be further phosphorylated by sphingosine kinase 1/2 to create sphingosine-1-phosphate (S1P). S1P has a multifaced role in the pro-survival progression of cancer and is crucial for immunomodulation.
Main body of the abstract
Ceramidase is a group of essential enzymes required to regulate bioactive lipids, particularly ceramide. These enzymes regulate several biological processes, including autophagy, apoptosis, differentiation, and cell proliferation. Based on the literature, acid ceramidase-1 (AC) is an important enzyme that converts ceramide to sphingosine, which is further processed to S1P by sphingosine kinase 1/2. Intriguingly, several human cancers exhibit overexpression of AC activity, but systematic research on its involvement in cancer progression is lacking, indicating the need for further research on this emerging target.
Short conclusion
The present review article provides a comprehensive summary of all known AC inhibitors. Through an analysis of reported IC50 values, we have aimed to increase our understanding of these inhibitors structure–activity relationship. Additionally, using molecular modeling techniques, we have refined the structural prerequisites for developing future AC inhibitors.
Journal Article
Celastrol and Triptolide Suppress Stemness in Triple Negative Breast Cancer: Notch as a Therapeutic Target for Stem Cells
2021
Triple negative breast cancer (TNBC) is observed in ~15% of breast cancers and results in poor survival and increased distant metastases. Within the tumor are present a small portion of cancer stem cells that drive tumorigenesis and metastasis. In this study, we aimed to elucidate whether the two natural compounds, celastrol and triptolide, inhibit stemness in TNBC. MDA-MB-231, BT20, and a patient-derived primary cells (PD-TNBC) were used in the study. Mammosphere assay was performed to assess the stemness. Both celastrol and triptolide treatment suppressed mammosphere formation. Furthermore, the compound suppressed expression of cancer stem cell marker proteins DCLK1, ALDH1, and CD133. Notch signaling plays a critical role in stem cells renewal. Both celastrol or triptolide reduced Notch -1 activation and expression of its downstream target proteins HES-1 and HEY-1. However, when NICD 1 was ectopically overexpressed in the cells, it partially rescued proliferation and mammosphere formation of the cells, supporting the role of notch signaling. Together, these data demonstrate that targeting stem cells and the notch signaling pathway may be an effective strategy for curtailing TNBC progression.
Journal Article
Fosciclopirox suppresses growth of high-grade urothelial cancer by targeting the γ-secretase complex
2021
Ciclopirox (CPX) is an FDA-approved topical antifungal agent that has demonstrated preclinical anticancer activity in a number of solid and hematologic malignancies. Its clinical utility as an oral anticancer agent, however, is limited by poor oral bioavailability and gastrointestinal toxicity. Fosciclopirox, the phosphoryloxymethyl ester of CPX (Ciclopirox Prodrug, CPX-POM), selectively delivers the active metabolite, CPX, to the entire urinary tract following parenteral administration. We characterized the activity of CPX-POM and its major metabolites in in vitro and in vivo preclinical models of high-grade urothelial cancer. CPX inhibited cell proliferation, clonogenicity and spheroid formation, and increased cell cycle arrest at S and G0/G1 phases. Mechanistically, CPX suppressed activation of Notch signaling. Molecular modeling and cellular thermal shift assays demonstrated CPX binding to γ-secretase complex proteins Presenilin 1 and Nicastrin, which are essential for Notch activation. To establish in vivo preclinical proof of principle, we tested fosciclopirox in the validated N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN) mouse bladder cancer model. Once-daily intraperitoneal administration of CPX-POM for four weeks at doses of 235 mg/kg and 470 mg/kg significantly decreased bladder weight, a surrogate for tumor volume, and resulted in a migration to lower stage tumors in CPX-POM treated animals. This was coupled with a reduction in the proliferation index. Additionally, there was a reduction in Presenilin 1 and Hes-1 expression in the bladder tissues of CPX-POM treated animals. Following the completion of the first-in-human Phase 1 trial (NCT03348514), the pharmacologic activity of fosciclopirox is currently being characterized in a Phase 1 expansion cohort study of muscle-invasive bladder cancer patients scheduled for cystectomy (NCT04608045) as well as a Phase 2 trial of newly diagnosed and recurrent urothelial cancer patients scheduled for transurethral resection of bladder tumors (NCT04525131).
Journal Article