Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
25 result(s) for "Ebelke, G."
Sort by:
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51-1.70 m), fiber-fed, multi-object (300 fibers), high resolution (R = λ/Δλ ∼ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ∼105 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 to 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a \"gang connector\" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ∼400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51–1.70 μm), fiber-fed, multi-object (300 fibers), high resolution (R = λ/Δλ ∼ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ∼10⁵ red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy’s chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 to 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument’s successful development was enabled by several key innovations, including a “gang connector” to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ∼400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.
Deep SDSS optical spectroscopy of distant halo stars II. Iron, calcium, and magnesium abundances
We analyze a sample of 3,944 low-resolution (R ~ 2000) optical spectra from the Sloan Digital Sky Survey (SDSS), focusing on stars with effective temperatures 5800 < Teff < 6300 K, and distances from the Milky Way plane in excess of 5 kpc, and determine their abundances of Fe, Ca, and Mg. We followed the same methodology as in the previous paper in this series, deriving atmospheric parameters by chi2 minimization, but this time we obtained the abundances of individual elements by fitting their associated spectral lines. Distances were calculated from absolute magnitudes obtained by a statistical comparison of our stellar parameters with stellar-evolution models. The observations reveal a decrease in the abundances of iron, calcium, and magnesium at large distances from the Galactic center. The median abundances for the halo stars analyzed are fairly constant up to a Galactocentric distance r ~ 20 kpc, rapidly decrease between r ~ 20 and r ~ 40 kpc, and flatten out to significantly lower values at larger distances, consistent with previous studies. In addition, we examine the [Ca/Fe] and [Mg/Fe] as a function of Fe/H and Galactocentric distance. Our results show that the most distant parts of the halo show a steeper variation of the [Ca/Fe] and [Mg/Fe] with iron. We found that at the range -1.6 < [Fe/H] < -0.4 [Ca/Fe] decreases with distance, in agreement with earlier results based on local stars. However, the opposite trend is apparent for [Mg/Fe]. Our conclusion that the outer regions of the halo are more metal-poor than the inner regions, based on in situ observations of distant stars, agrees with recent results based on inferences from the kinematics of more local stars, and with predictions of recent galaxy formation simulations for galaxies similar to the Milky Way.
Deep SDSS optical spectroscopy of distant halo stars I. Atmospheric parameters and stellar metallicity distribution
We analyze a sample of tens of thousands of spectra of halo turnoff stars, obtained with the optical spectrographs of the Sloan Digital Sky Survey (SDSS), to characterize the stellar halo population \"in situ\" out to a distance of a few tens of kpc from the Sun. In this paper we describe the derivation of atmospheric parameters. We also derive the overall stellar metallicity distribution based on F-type stars observed as flux calibrators for the Baryonic Oscillations Spectroscopic Survey (BOSS). Our analysis is based on an automated method that determines the set of parameters of a model atmosphere that reproduces each observed spectrum best. We used an optimization algorithm and evaluate model fluxes by means of interpolation in a precomputed grid. In our analysis, we account for the spectrograph's varying resolution as a function of fiber and wavelength. Our results for early SDSS (pre-BOSS upgrade) data compare well with those from the SEGUE Stellar Parameter Pipeline (SSPP), except for stars with logg (cgs units) lower than 2.5. An analysis of stars in the globular cluster M13 reveals a dependence of the inferred metallicity on surface gravity for stars with logg < 2.5, confirming the systematics identified in the comparison with the SSPP. We find that our metallicity estimates are significantly more precise than the SSPP results. We obtain a halo metallicity distribution that is narrower and more asymmetric than in previous studies. The lowest gravity stars in our sample, at tens of kpc from the Sun, indicate a shift of the metallicity distribution to lower abundances, consistent with what is expected from a dual halo system in the Milky Way.
The Apache Point Observatory Galactic Evolution Experiment (APOGEE) Spectrographs
We describe the design and performance of the near-infrared (1.51--1.70 micron), fiber-fed, multi-object (300 fibers), high resolution (R = lambda/delta lambda ~ 22,500) spectrograph built for the Apache Point Observatory Galactic Evolution Experiment (APOGEE). APOGEE is a survey of ~ 10^5 red giant stars that systematically sampled all Milky Way populations (bulge, disk, and halo) to study the Galaxy's chemical and kinematical history. It was part of the Sloan Digital Sky Survey III (SDSS-III) from 2011 -- 2014 using the 2.5 m Sloan Foundation Telescope at Apache Point Observatory, New Mexico. The APOGEE-2 survey is now using the spectrograph as part of SDSS-IV, as well as a second spectrograph, a close copy of the first, operating at the 2.5 m du Pont Telescope at Las Campanas Observatory in Chile. Although several fiber-fed, multi-object, high resolution spectrographs have been built for visual wavelength spectroscopy, the APOGEE spectrograph is one of the first such instruments built for observations in the near-infrared. The instrument's successful development was enabled by several key innovations, including a \"gang connector\" to allow simultaneous connections of 300 fibers; hermetically sealed feedthroughs to allow fibers to pass through the cryostat wall continuously; the first cryogenically deployed mosaic volume phase holographic grating; and a large refractive camera that includes mono-crystalline silicon and fused silica elements with diameters as large as ~ 400 mm. This paper contains a comprehensive description of all aspects of the instrument including the fiber system, optics and opto-mechanics, detector arrays, mechanics and cryogenics, instrument control, calibration system, optical performance and stability, lessons learned, and design changes for the second instrument.
The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: constraints on the time variation of fundamental constants from the large-scale two-point correlation function
We obtain constraints on the variation of the fundamental constants from the full shape of the redshift-space correlation function of a sample of luminous galaxies drawn from the Data Release 9 of the Baryonic Oscillations Spectroscopic Survey. We combine this information with data from recent CMB, BAO and H_0 measurements. We focus on possible variations of the fine structure constant \\alpha and the electron mass m_e in the early universe, and study the degeneracies between these constants and other cosmological parameters, such as the dark energy equation of state parameter w_DE, the massive neutrinos fraction f_\\nu, the effective number of relativistic species N_eff, and the primordial helium abundance Y_He. When only one of the fundamental constants is varied, our final bounds are \\alpha / \\alpha_0 = 0.9957_{-0.0042}^{+0.0041} and m_e /(m_e)_0 = 1.006_{-0.013}^{+0.014}. For their joint variation, our results are \\alpha / \\alpha_0 = 0.9901_{-0.0054}^{+0.0055} and m_e /(m_e)_0 = 1.028 +/- 0.019. Although when m_e is allowed to vary our constraints on w_DE are consistent with a cosmological constant, when \\alpha is treated as a free parameter we find w_DE = -1.20 +/- 0.13; more than 1 \\sigma away from its standard value. When f_\\nu and \\alpha are allowed to vary simultaneously, we find f_\\nu < 0.043 (95% CL), implying a limit of \\sum m_\\nu < 0.46 eV (95% CL), while for m_e variation, we obtain f_nu < 0.086 (95% CL), which implies \\sum m_\\nu < 1.1 eV (95% CL). When N_eff or Y_He are considered as free parameters, their simultaneous variation with \\alpha provides constraints close to their standard values (when the H_0 prior is not included in the analysis), while when m_e is allowed to vary, their preferred values are significantly higher. In all cases, our results are consistent with no variations of \\alpha or m_e at the 1 or 2 \\sigma level.
The SDSS-III APOGEE Radial Velocity Survey of M dwarfs I: Description of Survey and Science Goals
We are carrying out a large ancillary program with the SDSS-III, using the fiber-fed multi-object NIR APOGEE spectrograph, to obtain high-resolution H-band spectra of more than 1200 M dwarfs. These observations are used to measure spectroscopic rotational velocities, radial velocities, physical stellar parameters, and variability of the target stars. Here, we describe the target selection for this survey and results from the first year of scientific observations based on spectra that is publicly available in the SDSS-III DR10 data release. As part of this paper we present RVs and vsini of over 200 M dwarfs, with a vsini precision of ~2 km/s and a measurement floor at vsini = 4 km/s. This survey significantly increases the number of M dwarfs studied for vsini and RV variability (at ~100-200 m/s), and will advance the target selection for planned RV and photometric searches for low mass exoplanets around M dwarfs, such as HPF, CARMENES, and TESS. Multiple epochs of radial velocity observations enable us to identify short period binaries, and AO imaging of a subset of stars enables the detection of possible stellar companions at larger separations. The high-resolution H-band APOGEE spectra provide the opportunity to measure physical stellar parameters such as effective temperatures and metallicities for many of these stars. At the culmination of this survey, we will have obtained multi-epoch spectra and RVs for over 1400 stars spanning spectral types of M0-L0, providing the largest set of NIR M dwarf spectra at high resolution, and more than doubling the number of known spectroscopic vsini values for M dwarfs. Furthermore, by modeling telluric lines to correct for small instrumental radial velocity shifts, we hope to achieve a relative velocity precision floor of 50 m/s for bright M dwarfs. We present preliminary results of this telluric modeling technique in this paper.
Luminosity Function from dedicated SDSS-III and MMT data of quasars in 0.7
We present a measurement of the quasar luminosity function in the range 0.682.15. Using pure luminosity evolution models, we fitted our LF measurements, and predicted quasar number counts as a function of redshift and observed magnitude. These predictions are useful inputs for future cosmology surveys such as those relying on the observation of quasars to measure baryon acoustic oscillations.
Column density distribution and cosmological mass density of neutral gas: Sloan Digital Sky Survey-III Data Release 9
We present the first results from an ongoing survey for Damped Lyman-alpha systems (DLAs) in the spectra of z>2 quasars observed in the course of the Baryon Oscillation Spectroscopic Survey (BOSS), which is part of the Sloan Digital Sky Survey (SDSS) III. Our full (non-statistical) sample, based on Data Release 9, comprises 12,081 systems with log N(HI)>=20, out of which 6,839 have log N(HI)>=20.3. This is the largest DLA sample ever compiled, superseding that from SDSS-II by a factor of seven. Using a statistical sub-sample and estimating systematics from realistic mock data, we probe the N(HI) distribution at = 2.5. Contrary to what is generally believed, the distribution extends beyond 10^22 cm^-2 with a moderate slope of index\\approx-3.5. This result matches surprisingly well the opacity-corrected distribution observed at z = 0. The cosmological mass density of neutral gas in DLAs is found to be Omega_g_DLA~10^-3, evolving only mildly over the past 12 billion years.
Homogeneous Analysis of Globular Clusters from the APOGEE Survey with the BACCHUS Code. II. The Southern Clusters and Overview
We investigate the Fe, C, N, O, Mg, Al, Si, K, Ca, Ce and Nd abundances of 2283 red giant stars in 31 globular clusters from high-resolution spectra observed in both the northern and southern hemisphere by the SDSS-IV APOGEE-2 survey. This unprecedented homogeneous dataset, largest to date, allows us to discuss the intrinsic Fe spread, the shape and statistics of Al-Mg and N-C anticorrelations as a function of cluster mass, luminosity, age and metallicity for all 31 clusters. We find that the Fe spread does not depend on these parameters within our uncertainties including cluster metallicity, contradicting earlier observations. We do not confirm the metallicity variations previously observed in M22 and NGC 1851. Some clusters show a bimodal Al distribution, while others exhibit a continuous distribution as has been previously reported in the literature. We confirm more than 2 populations in \\(\\omega\\) Cen and NGC 6752, and find new ones in M79. We discuss the scatter of Al by implementing a correction to the standard chemical evolution of Al in the Milky Way. After correction, its dependence on cluster mass is increased suggesting that the extent of Al enrichment as a function of mass was suppressed before the correction. We observe a turnover in the Mg-Al anticorrelation at very low Mg in \\(\\omega\\) Cen, similar to the pattern previously reported in M15 and M92. \\(\\omega\\) Cen may also have a weak K-Mg anticorrelation, and if confirmed, it would be only the third cluster known to show such a pattern.