Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
5
result(s) for
"Feliciello, Giancarlo"
Sort by:
Tumor Cell Invasion in Glioblastoma
by
Klein, Christoph A.
,
Feliciello, Giancarlo
,
Leidgens, Verena
in
Animals
,
Brain cancer
,
Brain Neoplasms - pathology
2020
Glioblastoma (GBM) is a particularly devastating tumor with a median survival of about 16 months. Recent research has revealed novel insights into the outstanding heterogeneity of this type of brain cancer. However, all GBM subtypes share the hallmark feature of aggressive invasion into the surrounding tissue. Invasive glioblastoma cells escape surgery and focal therapies and thus represent a major obstacle for curative therapy. This review aims to provide a comprehensive understanding of glioma invasion mechanisms with respect to tumor-cell-intrinsic properties as well as cues provided by the microenvironment. We discuss genetic programs that may influence the dissemination and plasticity of GBM cells as well as their different invasion patterns. We also review how tumor cells shape their microenvironment and how, vice versa, components of the extracellular matrix and factors from non-neoplastic cells influence tumor cell motility. We further discuss different research platforms for modeling invasion. Finally, we highlight the importance of accounting for the complex interplay between tumor cell invasion and treatment resistance in glioblastoma when considering new therapeutic approaches.
Journal Article
Interleukin-6 trans-signaling is a candidate mechanism to drive progression of human DCCs during clinical latency
by
Guetter, Severin
,
Czyz, Zbigniew
,
Schneider, Elisabeth
in
1-Phosphatidylinositol 3-kinase
,
13/106
,
13/31
2020
Although thousands of breast cancer cells disseminate and home to bone marrow until primary surgery, usually less than a handful will succeed in establishing manifest metastases months to years later. To identify signals that support survival or outgrowth in patients, we profile rare bone marrow-derived disseminated cancer cells (DCCs) long before manifestation of metastasis and identify IL6/PI3K-signaling as candidate pathway for DCC activation. Surprisingly, and similar to mammary epithelial cells, DCCs lack membranous IL6 receptor expression and mechanistic dissection reveals IL6 trans-signaling to regulate a stem-like state of mammary epithelial cells via gp130. Responsiveness to IL6 trans-signals is found to be niche-dependent as bone marrow stromal and endosteal cells down-regulate gp130 in premalignant mammary epithelial cells as opposed to vascular niche cells.
PIK3CA
activation renders cells independent from IL6 trans-signaling. Consistent with a bottleneck function of microenvironmental DCC control, we find
PIK3CA
mutations highly associated with late-stage metastatic cells while being extremely rare in early DCCs. Our data suggest that the initial steps of metastasis formation are often not cancer cell-autonomous, but also depend on microenvironmental signals.
Metastatic dissemination in breast cancer patients occurs early in malignant transformation, raising questions about how disseminated cancer cells (DCC) progress at distant sites. Here, the authors show that DCCs in bone marrow are activated via IL6-trans-signaling and thereby acquire stemness traits relevant for metastasis formation.
Journal Article
In-Depth Characterization of L1CAM+ Extracellular Vesicles as Potential Biomarkers for Anti-CD20 Therapy Response in Relapsing–Remitting Multiple Sclerosis
by
Maciak, Karina
,
Feliciello, Giancarlo
,
Breinbauer, Regina
in
Adult
,
Antigens, CD20 - immunology
,
Biomarkers
2025
The effective suppression of inflammation using disease-modifying therapies is essential in the treatment of multiple sclerosis (MS). Anti-CD20 monoclonal antibodies are commonly used long-term as maintenance therapies, largely due to the lack of reliable biomarkers to guide dosing and evaluate treatment response. However, prolonged use increases the risk of infections and other immune-mediated side effects. The unique ability of brain-derived blood extracellular vesicles (EVs) to cross the blood–brain barrier and reflect the central nervous system (CNS) immune status has sparked interest in their potential as biomarkers. This study aimed to assess whether blood-derived L1CAM+ EVs could serve as biomarkers of treatment response to rituximab (RTX) in patients with relapsing-remitting MS (RRMS). Serum samples (n = 25) from the baseline (month 0) and after 6 months were analyzed from the RTX arm of the ongoing randomized clinical trial OVERLORD-MS (comparing anti-CD20 therapies in RRMS patients) and were compared with serum samples from healthy controls (n = 15). Baseline cerebrospinal fluid (CSF) samples from the same study cohort were also included. EVs from both serum and CSF samples were characterized, considering morphology, size, and concentration, using transmission electron microscopy (TEM) and nanoparticle tracking analysis (NTA). The immunophenotyping of EV surface receptors was performed using flow cytometry with the MACSPlex exosome kit, while label-free quantitative proteomics of EV protein cargo was conducted using a proximity extension assay (PEA). TEM confirmed the presence of EVs with the expected round morphology with a diameter of 50–150 nm. NTA showed significantly higher concentrations of L1CAM+ EVs (p < 0.0001) in serum total EVs and EBNA1+ EVs (p < 0.01) in serum L1CAM+ EVs at baseline (untreated) compared to in healthy controls. After six months of RTX therapy, there was a significant reduction in L1CAM+ EV concentration (p < 0.0001) and the downregulation of TNFRSF13B (p = 0.0004; FC = −0.49) in serum total EVs. Additionally, non-significant changes were observed in CD79B and CCL2 levels in serum L1CAM+ EVs at baseline compared to in controls and after six months of RTX therapy. In conclusion, L1CAM+ EVs in serum showed distinct immunological profiles before and after rituximab treatment, underscoring their potential as dynamic biomarkers for individualized anti-CD20 therapy in MS.
Journal Article
Cellular liquid biopsy provides unique chances for disease monitoring, preclinical model generation and therapy adjustment in rare salivary gland cancer patients
2025
While cell‐free liquid biopsy (cfLB) approaches provide simple and inexpensive disease monitoring, cell‐based liquid biopsy (cLB) may enable additional molecular genetic assessment of systemic disease heterogeneity and preclinical model development. We investigated 71 blood samples of 62 patients with various advanced cancer types and subjected enriched circulating tumor cells (CTCs) to organoid culture conditions. CTC‐derived tumoroid models were characterized by DNA/RNA sequencing and immunohistochemistry, as well as functional drug testing. Results were linked to molecular features of primary tumors, metastases, and CTCs; CTC enumeration was linked to disease progression. Of 52 samples with positive CTC counts (≥1) from eight different cancer types, only CTCs from two salivary gland cancer (SGC) patients formed tumoroid cultures (P = 0.0005). Longitudinal CTC enumeration of one SGC patient closely reflected disease progression during treatment and revealed metastatic relapse earlier than clinical imaging. Multiomics analysis and functional in vitro drug testing identified potential resistance mechanisms and drug vulnerabilities. We conclude that cLB might add a functional dimension (to the genetic approaches) in the personalized management of rare, difficult‐to‐treat cancers such as SGC.
We quantified and cultured circulating tumor cells (CTCs) of 62 patients with various cancer types and generated CTC‐derived tumoroid models from two salivary gland cancer patients. Cellular liquid biopsy‐derived information enabled molecular genetic assessment of systemic disease heterogeneity and functional testing for therapy selection in both salivary gland cancer patients, which may provide a paradigm for other rare cancers.
Journal Article
Detection of Genomically Aberrant Cells within Circulating Tumor Microemboli (CTMs) Isolated from Early-Stage Breast Cancer Patients
2021
Circulating tumor microemboli (CTMs) are clusters of cancer cells detached from solid tumors, whose study can reveal mechanisms underlying metastatization. As they frequently comprise unknown fractions of leukocytes, the analysis of copy number alterations (CNAs) is challenging. To address this, we titrated known numbers of leukocytes into cancer cells (MDA-MB-453 and MDA-MB-36, displaying high and low DNA content, respectively) generating tumor fractions from 0–100%. After low-pass sequencing, ichorCNA was identified as the best algorithm to build a linear mixed regression model for tumor fraction (TF) prediction. We then isolated 53 CTMs from blood samples of six early-stage breast cancer patients and predicted the TF of all clusters. We found that all clusters harbor cancer cells between 8 and 48%. Furthermore, by comparing the identified CNAs of CTMs with their matched primary tumors, we noted that only 31–71% of aberrations were shared. Surprisingly, CTM-private alterations were abundant (30–63%), whereas primary tumor-private alterations were rare (4–12%). This either indicates that CTMs are disseminated from further progressed regions of the primary tumor or stem from cancer cells already colonizing distant sites. In both cases, CTM-private mutations may inform us about specific metastasis-associated functions of involved genes that should be explored in follow-up and mechanistic studies.
Journal Article