Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
168 result(s) for "Feng, Chang-Ping"
Sort by:
Emerging Flexible Thermally Conductive Films: Mechanism, Fabrication, Application
HighlightsThe state-of-the-art progress of flexible thermally conductive films with ultrahigh in-plane isotropic thermal conductivity (k) and potential application are summarized.The heat transfer mechanism, processing methods to enhance k, optimization strategies to reduce interface thermal resistance of flexible thermally conductive films are reviewed.The limitations and opportunities for the future development of flexible thermally conductive films are proposed.Effective thermal management is quite urgent for electronics owing to their ever-growing integration degree, operation frequency and power density, and the main strategy of thermal management is to remove excess energy from electronics to outside by thermal conductive materials. Compared to the conventional thermal management materials, flexible thermally conductive films with high in-plane thermal conductivity, as emerging candidates, have aroused greater interest in the last decade, which show great potential in thermal management applications of next-generation devices. However, a comprehensive review of flexible thermally conductive films is rarely reported. Thus, we review recent advances of both intrinsic polymer films and polymer-based composite films with ultrahigh in-plane thermal conductivity, with deep understandings of heat transfer mechanism, processing methods to enhance thermal conductivity, optimization strategies to reduce interface thermal resistance and their potential applications. Lastly, challenges and opportunities for the future development of flexible thermally conductive films are also discussed.
Mechanism of T cell regulation by microRNAs
MicroRNAs (miRNAs) are small, non-coding single-stranded RNAs that can modulate target gene expression at post- transcriptional level and participate in cell proliferation, differentiation, and apoptosis. T cells have important functions in acquired immune response; miRNAs regulate this immune response by targeting the mRNAs of genes involved in T cell developmentp proliferationj differentiationp and function. For instancep miR-181 family members function in progression by targeting Bcl2 and CD69, among others. MiR-17 to miR-92 clusters function by binding to CREB 1, PTEN, and Bim. Considering that the suppression ofT cell-mediated immune responses against tumor cells is involved in cancer progression, we should investigate the mechanism by which miRNA regulates T cells to develop new approaches for cancer treatment.
Cisplatin plus gemcitabine versus paclitaxel plus gemcitabine as first-line therapy for metastatic triple-negative breast cancer (CBCSG006): a randomised, open-label, multicentre, phase 3 trial
Platinum chemotherapy has a role in the treatment of metastatic triple-negative breast cancer but its full potential has probably not yet been reached. We assessed whether a cisplatin plus gemcitabine regimen was non-inferior to or superior to paclitaxel plus gemcitabine as first-line therapy for patients with metastatic triple-negative breast cancer. For this open-label, randomised, phase 3, hybrid-designed trial undertaken at 12 institutions or hospitals in China, we included Chinese patients aged 18–70 years with previously untreated, histologically confirmed metastatic triple-negative breast cancer, and an ECOG performance status of 0–1. These patients were randomly assigned (1:1) to receive either cisplatin plus gemcitabine (cisplatin 75 mg/m2 on day 1 and gemcitabine 1250 mg/m2 on days 1 and 8) or paclitaxel plus gemcitabine (paclitaxel 175 mg/m2 on day 1 and gemcitabine 1250 mg/m2 on days 1 and 8) given intravenously every 3 weeks for a maximum of eight cycles. Randomisation was done centrally via an interactive web response system using block randomisation with a size of eight, with no stratification factors. Patients and investigator were aware of group assignments. The primary endpoint was progression-free survival and analyses were based on all patients who received at least one dose of assigned treatment. The margin used to establish non-inferiority was 1·2. If non-inferiority of cisplatin plus gemcitabine compared with paclitaxel plus gemcitabine was achieved, we would then test for superiority. The trial is registered with ClinicalTrials.gov, number NCT01287624. From Jan 14, 2011, to Nov 14, 2013, 240 patients were assessed for eligibility and randomly assigned to treatment (120 in the cisplatin plus gemcitabine group and 120 in the paclitaxel plus gemcitabine group). 236 patients received at least one dose of assigned chemotherapy and were included in the modified intention-to-treat analysis (118 per group). After a median follow-up of 16·3 months (IQR 14·4–26·8) in the cisplatin plus gemcitabine group and 15·9 months (10·7–25·4) in the paclitaxel plus gemcitabine group, the hazard ratio for progression-free survival was 0·692 (95% CI 0·523–0·915; pnon-inferiority<0·0001, psuperiority=0·009, thus cisplatin plus gemcitabine was both non-inferior to and superior to paclitaxel plus gemcitabine. Median progression-free survival was 7·73 months (95% CI 6·16–9·30) in the cisplatin plus gemcitabine group and 6·47 months (5·76–7·18) in the paclitaxel plus gemcitabine group. Grade 3 or 4 adverse events that differed significantly between the two groups included nausea (eight [7%] vs one [<1%]), vomiting (13 [11%] vs one [<1%]), musculoskeletal pain (none vs ten [8%]), anaemia (39 [33%] vs six [5%]), and thrombocytopenia (38 [32%] vs three [3%]), for the cisplatin plus gemcitabine compared with the paclitaxel plus gemcitabine groups, respectively. In addition, patients in the cisplatin plus gemcitabine group had significantly fewer events of grade 1–4 alopecia (12 [10%] vs 42 [36%]) and peripheral neuropathy (27 [23%] vs 60 [51%]), but more grade 1–4 anorexia (33 [28%] vs 10 [8%]), constipation (29 [25%] vs 11 [9%]), hypomagnesaemia (27 [23%] vs five [4%]), and hypokalaemia (10 [8%] vs two [2%]). Serious drug-related adverse events were seen in three patients in the paclitaxel plus gemcitabine group (interstitial pneumonia, anaphylaxis, and severe neutropenia) and four in the cisplatin plus gemcitabine group (pathological bone fracture, thrombocytopenia with subcutaneous haemorrhage, severe anaemia, and cardiogenic syncope). There were no treatment-related deaths. Cisplatin plus gemcitabine could be an alternative or even the preferred first-line chemotherapy strategy for patients with metastatic triple-negative breast cancer. Shanghai Natural Science Foundation.
Characterization of Exoelectrogenic Bacteria Enterobacter Strains Isolated from a Microbial Fuel Cell Exposed to Copper Shock Load
Microorganisms capable of generating electricity in microbial fuel cells (MFCs) have gained increasing interest. Here fourteen exoelectrogenic bacterial strains were isolated from the anodic biofilm in an MFC before and after copper (Cu) shock load by Hungate roll-tube technique with solid ferric (III) oxide as an electron acceptor and acetate as an electron donor. Phylogenetic analysis of the 16S rRNA gene sequences revealed that they were all closely related to Enterobacter ludwigii DSM 16688T within the Enterobacteriaceae family, although these isolated bacteria showed slightly different morphology before and after Cu shock load. Two representative strains R2B1 (before Cu shock load) and B4B2 (after Cu shock load) were chosen for further analysis. B4B2 is resistant to 200 mg L-1 of Cu(II) while R2B1 is not, which indicated the potential selection of the Cu shock load. Raman analysis revealed that both R2B1 and B4B2 contained c-type cytochromes. Cyclic voltammetry measurements revealed that strain R2B1 had the capacity to transfer electrons to electrodes. The experimental results demonstrated that strain R2B1 was capable of utilizing a wide range of substrates, including Luria-Bertani (LB) broth, cellulose, acetate, citrate, glucose, sucrose, glycerol and lactose to generate electricity, with the highest current density of 440 mA·m-2 generated from LB-fed MFC. Further experiments indicated that the bacterial cell density had potential correlation with the current density.
Comprehensive analysis of formin gene family highlights candidate genes related to pollen cytoskeleton and male fertility in wheat (Triticum aestivum L.)
Background Formin, a highly conserved multi-domain protein, interacts with microfilaments and microtubules. Although specifically expressed formin genes in anthers are potentially significant in research on male sterility and hybrid wheat breeding, similar reports in wheat, especially in thermo-sensitive genic male sterile (TGMS) wheat, remain elusive. Results Herein, we systematically characterized the formin genes in TGMS wheat line BS366 named TaFormins ( TaFHs ) and predicted their functions in inducing stress response. In total, 25 TaFH genes were uncovered, majorly localized in 2A, 2B, and 2D chromosomes. According to the neighbor-joining (NJ) method, all TaFH proteins from wheat and other plants clustered in 6 sub-groups (A-F). The modeled 3D structures of TaFH1-A/B, TaFH2-A/B, TaFH3-A/B and TaFH3-B/D were validated. And different numbers of stress and hormone-responsive regulatory elements in their 1500 base pair promoter regions were contained in the TaFH genes copies. TaFHs had specific temporal and spatial expression characteristics, whereby TaFH1 , TaFH4 , and TaFH5 were expressed highly in the stamen of BS366. Besides, the accumulation of TaFHs was remarkably lower in a low-temperature sterile condition (Nanyang) than fertile condition (Beijing), particularly at the early stamen development stage. The pollen cytoskeleton of BS366 was abnormal in the three stages under sterile and fertile environments. Furthermore, under different stress levels, TaFHs expression could be induced by drought, salt, abscisic acid (ABA), salicylic acid (SA), methyl jasmonate (MeJA), indole-3-acetic acid (IAA), polyethylene glycol (PEG), and low temperature. Some miRNAs, including miR167, miR1120, and miR172, interacts with TaFH genes; thus, we constructed an interaction network between microRNAs, TaFHs, phytohormone responses, and distribution of cytoskeleton to reveal the regulatory association between upstream genes of TaFH family members and sterile. Conclusions Collectively, this comprehensive analysis provides novel insights into TaFHs and miRNA resources for wheat breeding. These findings are, therefore, valuable in understanding the mechanism of TGMS fertility conversion in wheat.
Double thermoelectric power factor of a 2D electron system
Two-dimensional electron systems have attracted attention as thermoelectric materials, which can directly convert waste heat into electricity. It has been theoretically predicted that thermoelectric power factor can be largely enhanced when the two-dimensional electron layer is far narrower than the de Broglie wavelength. Although many studies have been made, the effectiveness has not been experimentally clarified thus far. Here we experimentally clarify that an enhanced two-dimensionality is efficient to enhance thermoelectric power factor. We fabricated superlattices of [ N unit cell SrTi 1− x Nb x O 3 |11 unit cell SrTiO 3 ] 10 —there are two different de Broglie wavelength in the SrTi 1− x Nb x O 3 system. The maximum power factor of the superlattice composed of the longer de Broglie wavelength SrTi 1− x Nb x O 3 exceeded ∼5 mW m −1  K −2 , which doubles the value of optimized bulk SrTi 1− x Nb x O 3 . The present approach—use of longer de Broglie wavelength—is epoch-making and is fruitful to design good thermoelectric materials showing high power factor. The accelerated growth of thermoelectric technology that efficiently converts waste heat to electricity necessitates the development of high-performance materials. Here, the authors experimentally demonstrate a 2D electron system with enhanced two-dimensionality and thermoelectric power factor.
Genome-wide identification and transcriptional characterization of DNA methyltransferases conferring temperature-sensitive male sterility in wheat
Background DNA methyltransferase (DMT) genes contribute to plant stress responses and development by de novo establishment and subsequent maintenance of DNA methylation during replication. The photoperiod and/or temperature-sensitive genic male sterile (P/TGMS) lines play an important role in hybrid seed production of wheat. However, only a few studies have reported on the effect of DMT genes on temperature-sensitive male sterility of wheat. Although DMT genes have been investigated in some plant species, the identification and analysis of DMT genes in wheat ( Triticum aestivum L.) based on genome-wide levels have not been reported. Results In this study, a detailed overview of phylogeny of 52 wheat DMT (TaDMT) genes was presented. Homoeolog retention for TaDMT genes was significantly above the average retention rate for whole-wheat genes, indicating the functional importance of many DMT homoeologs. We found that the strikingly high number of TaDMT genes resulted mainly from the significant expansion of the TaDRM subfamily. Intriguingly, all 5 paralogs belonged to the wheat DRM subfamily, and we speculated that tandem duplications might play a crucial role in the TaDRM subfamily expansion. Through the transcriptional analysis of TaDMT genes in a TGMS line BS366 and its hybrids with the other six fertile lines under sterile and fertile conditions, we concluded that TaCMT-D2 , TaMET1-B1 , and TaDRM-U6 might be involved in male sterility in BS366. Furthermore, a correlation analysis showed that TaMET1-B1 might negatively regulate the expression of TaRAFTIN1A , an important gene for pollen development, so we speculated regarding an epigenetic regulatory mechanism underlying the male sterility of BS366 via the interaction between TaMET1-B1 and TaRAFTIN1A . Conclusions Our findings presented a detailed phylogenic overview of the DMT genes and could provide novel insights into the effects of DMT genes on TGMS wheat.
Genomic identification and characterization of MYC family genes in wheat (Triticum aestivum L.)
Background MYC transcriptional factors are members of the bHLH (basic helix-loop-helix) superfamily, and play important roles in plant growth and development. Recent studies have revealed that some MYCs are involved in the crosstalk between Jasmonic acid regulatory pathway and light signaling in Arabidopsis , but such kinds of studies are rare in wheat, especially in photo-thermo-sensitive genic male sterile (PTGMS) wheat line. Results 27 non-redundant MYC gene copies, which belonged to 11 TaMYC genes, were identified in the whole genome of wheat (Chinese Spring). These gene copies were distributed on 13 different chromosomes, respectively. Based on the results of phylogenetic analysis, 27 TaMYC gene copies were clustered into group I, group III, and group IV. The identified TaMYC genes copies contained different numbers of light, stress, and hormone-responsive regulatory elements in their 1500 base pair promoter regions. Besides, we found that TaMYC3 was expressed highly in stem, TaMYC5 and TaMYC9 were expressed specially in glume, and the rest of TaMYC genes were expressed in all tissues (root, stem, leaf, pistil, stamen, and glume) of the PTGMS line BS366. Moreover, we found that TaMYC3, TaMYC7 , TaMYC9 , and TaMYC10 were highly sensitive to methyl jasmonate (MeJA), and other TaMYC genes responded at different levels. Furthermore, we confirmed the expression profiles of TaMYC family members under different light quality and plant hormone stimuli, and abiotic stresses. Finally, we predicted the wheat microRNAs that could interact with TaMYC family members, and built up a network to show their integrative relationships. Conclusions This study analyzed the size and composition of the MYC gene family in wheat, and investigated stress-responsive and light quality induced expression profiles of each TaMYC gene in the PTGMS wheat line BS366. In conclusion, we obtained lots of important information of TaMYC family, and the results of this study was supposed to contribute novel insights and gene and microRNA resources for wheat breeding, especially for the improvement of PTGMS wheat lines.
Comparative transcriptome and DNA methylation analysis in temperature-sensitive genic male sterile wheat BS366
Background Known as the prerequisite component for the heterosis breeding system, the male sterile line determines the hybrid yield and seed purity. Therefore, a deep understanding of the mechanism and gene network that leads to male sterility is crucial. BS366, a temperature-sensitive genic male sterile (TGMS) line, is male sterile under cold conditions (12 °C with 12 h of daylight) but fertile under normal temperature (20 °C with 12 h of daylight). Results During meiosis, BS366 was defective in forming tetrads and dyads due to the abnormal cell plate. During pollen development, unusual vacuolated pollen that could not accumulate starch grains at the binucleate stage was also observed. Transcriptome analysis revealed that genes involved in the meiotic process, such as sister chromatid segregation and microtubule-based movement, were repressed, while genes involved in DNA and histone methylation were induced in BS366 under cold conditions. MethylRAD was used for reduced DNA methylation sequencing of BS366 spikes under both cold and control conditions. The differentially methylated sites (DMSs) located in the gene region were mainly involved in carbohydrate and fatty acid metabolism, lipid metabolism, and transport. Differentially expressed and methylated genes were mainly involved in cell division. Conclusions These results indicated that the methylation of genes involved in carbon metabolism or fatty acid metabolism might contribute to male sterility in BS366 spikes, providing novel insight into the molecular mechanism of wheat male sterility.
Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma
Zhu Chen, Sai-Juan Chen, Wei-Li Zhao and colleagues identify recurrent loss-of-function mutations in the RNA helicase gene DDX3X in 20% of subjects with natural killer/T-cell lymphoma (NKTCL) in their study. The results suggest that DDX3X acts as a tumor suppressor and that its inactivation leads to poor clinical outcome. Natural killer/T-cell lymphoma (NKTCL) is a malignant proliferation of CD56 + and cytoCD3 + lymphocytes with aggressive clinical course, which is prevalent in Asian and South American populations 1 . The molecular pathogenesis of NKTCL has largely remained elusive. We identified somatic gene mutations in 25 people with NKTCL by whole-exome sequencing and confirmed them in an extended validation group of 80 people by targeted sequencing. Recurrent mutations were most frequently located in the RNA helicase gene DDX3X (21/105 subjects, 20.0%), tumor suppressors ( TP53 and MGA ), JAK-STAT-pathway molecules ( STAT3 and STAT5B ) and epigenetic modifiers ( MLL2 , ARID1A , EP300 and ASXL3 ). As compared to wild-type protein, DDX3X mutants exhibited decreased RNA-unwinding activity, loss of suppressive effects on cell-cycle progression in NK cells and transcriptional activation of NF-κB and MAPK pathways. Clinically, patients with DDX3X mutations presented a poor prognosis. Our work thus contributes to the understanding of the disease mechanism of NKTCL.