Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
94
result(s) for
"Flagan, Richard C"
Sort by:
Formation and evolution of molecular products in α-pinene secondary organic aerosol
2015
Much of our understanding of atmospheric secondary organic aerosol (SOA) formation from volatile organic compounds derives from laboratory chamber measurements, including mass yield and elemental composition. These measurements alone are insufficient to identify the chemical mechanisms of SOA production. We present here a comprehensive dataset on the molecular identity, abundance, and kinetics of α-pinene SOA, a canonical system that has received much attention owing to its importance as an organic aerosol source in the pristine atmosphere. Identified organic species account for ∼58–72% of the α-pinene SOA mass, and are characterized as semivolatile/low-volatility monomers and extremely low volatility dimers, which exhibit comparable oxidation states yet different functionalities. Features of the α-pinene SOA formation process are revealed for the first time, to our knowledge, from the dynamics of individual particle-phase components. Although monomeric products dominate the overall aerosol mass, rapid production of dimers plays a key role in initiating particle growth. Continuous production of monomers is observed after the parent α-pinene is consumed, which cannot be explained solely by gas-phase photochemical production. Additionally, distinct responses of monomers and dimers to α-pinene oxidation by ozone vs. hydroxyl radicals, temperature, and relative humidity are observed. Gas-phase radical combination reactions together with condensed phase rearrangement of labile molecules potentially explain the newly characterized SOA features, thereby opening up further avenues for understanding formation and evolution mechanisms of α-pinene SOA.
Journal Article
Reactive intermediates revealed in secondary organic aerosol formation from isoprene
2010
Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX = β-IEPOX + δ-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low- and high-NOx conditions, respectively. Isoprene low-NOx SOA is enhanced in the presence of acidified sulfate seed aerosol (mass yield 28.6%) over that in the presence of neutral aerosol (mass yield 1.3%). Increased uptake of IEPOX by acid-catalyzed particle-phase reactions is shown to explain this enhancement. Under high-NOx conditions, isoprene SOA formation occurs through oxidation of its second-generation product, MPAN. The similarity of the composition of SOA formed from the photooxidation of MPAN to that formed from isoprene and methacrolein demonstrates the role of MPAN in the formation of isoprene high-NOx SOA. Reactions of IEPOX and MPAN in the presence of anthropogenic pollutants (i.e., acidic aerosol produced from the oxidation of SO₂ and NO₂, respectively) could be a substantial source of \"missing urban SOA\" not included in current atmospheric models.
Journal Article
High sensitivity nanoparticle detection using optical microcavities
by
Kim, Ji-Hun
,
Lu, Tao
,
Lee, Hansuek
in
Binding sites
,
Biological Sciences
,
Biosensing Techniques
2011
We demonstrate a highly sensitive nanoparticle and virus detection method by using a thermal-stabilized reference interferometer in conjunction with an ultrahigh-Q microcavity. Sensitivity is sufficient to resolve shifts caused by binding of individual nanobeads in solution down to a record radius of 12.5 nm, a size approaching that of single protein molecules. A histogram of wavelength shift versus nanoparticle radius shows that particle size can be inferred from shift maxima. Additionally, the signal-to-noise ratio for detection of Influenza A virus is enhanced to 38:1 from the previously reported 3:1. The method does not use feedback stabilization of the probe laser. It is also observed that the conjunction of particle-induced backscatter and optical-path-induced shifts can be used to enhance detection signal-to-noise.
Journal Article
Predicted impact of thermal power generation emission control measures in the Beijing-Tianjin-Hebei region on air pollution over Beijing, China
by
Li, Zhen
,
Chang, Shucheng
,
Seinfeld, John H.
in
704/172/169/824
,
704/172/4081
,
Air Pollutants - analysis
2018
Widespread economic growth in China has led to increasing episodes of severe air pollution, especially in major urban areas. Thermal power plants represent a particularly important class of emissions. Here we present an evaluation of the predicted effectiveness of a series of recently proposed thermal power plant emission controls in the Beijing-Tianjin-Hebei (BTH) region on air quality over Beijing using the Community Multiscale Air Quality(CMAQ) atmospheric chemical transport model to predict CO, SO
2
, NO
2
, PM
2.5
, and PM
10
levels. A baseline simulation of the hypothetical removal of all thermal power plants in the BTH region is predicted to lead to 38%, 23%, 23%, 24%, and 24% reductions in current annual mean levels of CO, SO
2
, NO
2
, PM
2.5
, and PM
10
in Beijing, respectively. Similar percentage reductions are predicted in the major cities in the BTH region. Simulations of the air quality impact of six proposed thermal power plant emission reduction strategies over the BTH region provide an estimate of the potential improvement in air quality in the Beijing metropolitan area, as a function of the time of year.
Journal Article
Constraining the contribution of organic acids and AMS m/z 44 to the organic aerosol budget: On the importance of meteorology, aerosol hygroscopicity, and region
2010
Airborne measurements in regions of varying meteorology and pollution are used to quantify the contribution of organic acids and a mass spectral marker for oxygenated aerosols, m/z 44, to the total organic aerosol budget. Organic acids and m/z 44 separately are shown to exhibit their highest organic mass fractions in the vicinity of clouds. The contribution of such oxygenated species is shown to increase as a function of relative humidity, aerosol hygroscopicity (and decreasing organic mass fraction), and is typically greater off the California coast versus the continental atmospheres studied. Reasons include more efficient chemistry and partitioning of organic acid precursors with increasing water in the reaction medium, and high aqueous‐phase processing times in boundary layers with higher cloud volume fractions. These results highlight the importance of secondary organic aerosol formation in both wet aerosols and cloud droplets.
Journal Article
On the link between ocean biota emissions, aerosol, and maritime clouds: Airborne, ground, and satellite measurements off the coast of California
by
Miller, Steven D.
,
Gates, Harmony
,
Nenes, Athanasios
in
amines
,
Animal and plant ecology
,
Animal, plant and microbial ecology
2009
Surface, airborne, and satellite measurements over the eastern Pacific Ocean off the coast of California during the period between 2005 and 2007 are used to explore the relationship between ocean chlorophyll a, aerosol, and marine clouds. Periods of enhanced chlorophyll a and wind speed are coincident with increases in particulate diethylamine and methanesulfonate concentrations. The measurements indicate that amines are a source of secondary organic aerosol in the marine atmosphere. Subsaturated aerosol hygroscopic growth measurements indicate that the organic component during periods of high chlorophyll a and wind speed exhibit considerable water uptake ability. Increased average cloud condensation nucleus (CCN) activity during periods of increased chlorophyll a levels likely results from both size distribution and aerosol composition changes. The available data over the period of measurements indicate that the cloud microphysical response, as represented by either cloud droplet number concentration or cloud droplet effective radius, is likely influenced by a combination of atmospheric dynamics and aerosol perturbations during periods of high chlorophyll a concentrations.
Journal Article
Cloud condensation nuclei activity, closure, and droplet growth kinetics of Houston aerosol during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS)
2009
In situ cloud condensation nuclei (CCN) measurements were obtained in the boundary layer over Houston, Texas, during the 2006 Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) campaign onboard the CIRPAS Twin Otter. Polluted air masses in and out of cloudy regions were sampled for a total of 22 flights, with CCN measurements obtained for 17 of these flights. In this paper, we focus on CCN closure during two flights, within and downwind of the Houston regional plume and over the Houston Ship Channel. During both flights, air was sampled with particle concentrations exceeding 25,000 cm−3 and CCN concentrations exceeding 10,000 cm−3. CCN closure is evaluated by comparing measured concentrations with those predicted on the basis of measured aerosol size distributions and aerosol mass spectrometer particle composition. Different assumptions concerning the internally mixed chemical composition result in average CCN overprediction ranging from 3% to 36% (based on a linear fit). It is hypothesized that the externally mixed fraction of the aerosol contributes much of the CCN closure scatter, while the internally mixed fraction largely controls the overprediction bias. On the basis of the droplet sizes of activated CCN, organics do not seem to impact, on average, the CCN activation kinetics.
Journal Article
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
2020
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog
1
,
2
, but how it occurs in cities is often puzzling
3
. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms
4
,
5
.
Measurements in the CLOUD chamber at CERN show that the rapid condensation of ammonia and nitric acid vapours could be important for the formation and survival of new particles in wintertime urban conditions, contributing to urban smog.
Journal Article
The role of low-volatility organic compounds in initial particle growth in the atmosphere
by
Ehrhart, Sebastian
,
Schobesberger, Siegfried
,
Curtius, Joachim
in
639/766/530/951
,
704/106/35/824
,
704/172/169/824
2016
The growth of nucleated organic particles has been investigated in controlled laboratory experiments under atmospheric conditions; initial growth is driven by organic vapours of extremely low volatility, and accelerated by more abundant vapours of slightly higher volatility, leading to markedly different modelled concentrations of atmospheric cloud condensation nuclei when this growth mechanism is taken into account.
Aerosol particle formation in clean air
The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s
Nature
point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby
et al
. show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl
et al
. examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility.
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday
1
. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres
2
,
3
. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles
4
, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth
5
,
6
, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer
7
,
8
,
9
,
10
. Although recent studies
11
,
12
,
13
predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon
2
, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)
2
,
14
, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown
15
that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10
−4.5
micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10
−4.5
to 10
−0.5
micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Journal Article
Role of sulphuric acid, ammonia and galactic cosmic rays in atmospheric aerosol nucleation
by
Curtius, Joachim
,
Ehrhart, Sebastian
,
Schobesberger, Siegfried
in
704/106/35/824
,
Accretion
,
Acids
2011
Cloud cover at CERN
A substantial source of cloud condensation nuclei in the atmospheric boundary layer is thought to originate from the nucleation of trace sulphuric acid vapour. Despite extensive research, we still lack a quantitative understanding of the nucleation mechanism and the possible role of cosmic rays, creating one of the largest uncertainties in atmospheric models and climate predictions. Jasper Kirkby and colleagues present the first results from the CLOUD experiment at CERN, which studies nucleation and other ion-aerosol cloud interactions under precisely controlled conditions. They find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume increase the nucleation rate of sulphuric acid particles by more than a factor of 100 to 1,000. They also find that ion-induced binary nucleation of H
2
SO
4
–H
2
O can occur in the mid-troposphere, but is negligible in the boundary layer and so additional species are necessary. Even with the large enhancements in rate caused by ammonia and ions, they conclude that atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary layer nucleation.
Atmospheric aerosols exert an important influence on climate
1
through their effects on stratiform cloud albedo and lifetime
2
and the invigoration of convective storms
3
. Model calculations suggest that almost half of the global cloud condensation nuclei in the atmospheric boundary layer may originate from the nucleation of aerosols from trace condensable vapours
4
, although the sensitivity of the number of cloud condensation nuclei to changes of nucleation rate may be small
5
,
6
. Despite extensive research, fundamental questions remain about the nucleation rate of sulphuric acid particles and the mechanisms responsible, including the roles of galactic cosmic rays and other chemical species such as ammonia
7
. Here we present the first results from the CLOUD experiment at CERN. We find that atmospherically relevant ammonia mixing ratios of 100 parts per trillion by volume, or less, increase the nucleation rate of sulphuric acid particles more than 100–1,000-fold. Time-resolved molecular measurements reveal that nucleation proceeds by a base-stabilization mechanism involving the stepwise accretion of ammonia molecules. Ions increase the nucleation rate by an additional factor of between two and more than ten at ground-level galactic-cosmic-ray intensities, provided that the nucleation rate lies below the limiting ion-pair production rate. We find that ion-induced binary nucleation of H
2
SO
4
–H
2
O can occur in the mid-troposphere but is negligible in the boundary layer. However, even with the large enhancements in rate due to ammonia and ions, atmospheric concentrations of ammonia and sulphuric acid are insufficient to account for observed boundary-layer nucleation.
Journal Article