Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
81 result(s) for "Friedland, Robert P."
Sort by:
The role of microbial amyloid in neurodegeneration
It has become apparent that the intestinal microbiota orchestrates important aspects of our metabolism, immunity, and development. Recent work has demonstrated that the microbiota also influences brain function in healthy and diseased individuals. Of great interest are reports that intestinal bacteria play a role in the pathogenic cascade of both Parkinson and Alzheimer diseases. These neurodegenerative disorders both involve misfolding of endogenous proteins that spreads from one region of the body to another in a manner analogous to prions. The mechanisms of how the microbiota influences or is correlated with disease require elaboration. Microbial proteins or metabolites may influence neurodegeneration through the promotion of amyloid formation by human proteins or by enhancing inflammatory responses to endogenous neuronal amyloids. We review the current knowledge concerning bacterial amyloids and their potential to influence cerebral amyloid aggregation and neuroinflammation. We propose the term \"mapranosis\" to describe the process of microbiota-associated proteopathy and neuroinflammation. The study of amyloid proteins made by the microbiota and their influence on health and disease is in its infancy. This is a promising area for therapeutic intervention because there are many ways to alter our microbial partners and their products, including amyloid proteins.
Exposure to the Functional Bacterial Amyloid Protein Curli Enhances Alpha-Synuclein Aggregation in Aged Fischer 344 Rats and Caenorhabditis elegans
Misfolded alpha-synuclein (AS) and other neurodegenerative disorder proteins display prion-like transmission of protein aggregation. Factors responsible for the initiation of AS aggregation are unknown. To evaluate the role of amyloid proteins made by the microbiota we exposed aged rats and transgenic C . elegans to E . coli producing the extracellular bacterial amyloid protein curli. Rats exposed to curli-producing bacteria displayed increased neuronal AS deposition in both gut and brain and enhanced microgliosis and astrogliosis compared to rats exposed to either mutant bacteria unable to synthesize curli, or to vehicle alone. Animals exposed to curli producing bacteria also had more expression of TLR2, IL-6 and TNF in the brain than the other two groups. There were no differences among the rat groups in survival, body weight, inflammation in the mouth, retina, kidneys or gut epithelia, and circulating cytokine levels. AS-expressing C . elegans fed on curli-producing bacteria also had enhanced AS aggregation. These results suggest that bacterial amyloid functions as a trigger to initiate AS aggregation through cross-seeding and also primes responses of the innate immune system.
What Are the Molecular Mechanisms by Which Functional Bacterial Amyloids Influence Amyloid Beta Deposition and Neuroinflammation in Neurodegenerative Disorders?
Despite the enormous literature documenting the importance of amyloid beta (Ab) protein in Alzheimer's disease, we do not know how Ab aggregation is initiated and why it has its unique distribution in the brain. In vivo and in vitro evidence has been developed to suggest that functional microbial amyloid proteins produced in the gut may cross-seed Ab aggregation and prime the innate immune system to have an enhanced and pathogenic response to neuronal amyloids. In this commentary, we summarize the molecular mechanisms by which the microbiota may initiate and sustain the pathogenic processes of neurodegeneration in aging.
Alzheimer's disease and vascular dementia in developing countries: prevalence, management, and risk factors
Despite mortality due to communicable diseases, poverty, and human conflicts, dementia incidence is destined to increase in the developing world in tandem with the ageing population. Current data from developing countries suggest that age-adjusted dementia prevalence estimates in 65 year olds are high (≥5%) in certain Asian and Latin American countries, but consistently low (1–3%) in India and sub-Saharan Africa; Alzheimer's disease accounts for 60% whereas vascular dementia accounts for ∼30% of the prevalence. Early-onset familial forms of dementia with single-gene defects occur in Latin America, Asia, and Africa. Illiteracy remains a risk factor for dementia. The APOE ɛ4 allele does not influence dementia progression in sub-Saharan Africans. Vascular factors, such as hypertension and type 2 diabetes, are likely to increase the burden of dementia. Use of traditional diets and medicinal plant extracts might aid prevention and treatment. Dementia costs in developing countries are estimated to be US$73 billion yearly, but care demands social protection, which seems scarce in these regions.
Humans Have Antibodies against a Plant Virus: Evidence from Tobacco Mosaic Virus
Tobacco mosaic virus (TMV), a widespread plant pathogen, is found in tobacco (including cigarettes and smokeless tobacco) as well as in many other plants. Plant viruses do not replicate or cause infection in humans or other mammals. This study was done to determine whether exposure to tobacco products induces an immune response to TMV in humans. Using a sandwich ELISA assay, we detected serum anti-TMV antibodies (IgG, IgG1, IgG3, IgG4, IgA, and IgM) in all subjects enrolled in the study (20 healthy smokers, 20 smokeless-tobacco users, and 20 non-smokers). Smokers had a higher level of serum anti-TMV IgG antibodies than non-smokers, while the serum level of anti-TMV IgA from smokeless tobacco users was lower than smokers and non-smokers. Using bioinformatics, we also found that the human protein TOMM40L (an outer mitochondrial membrane 40 homolog--like translocase) contains a strong homology of six contiguous amino acids to the TMV coat protein, and TOMM40L peptide exhibited cross-reactivity with anti-TMV antibodies. People who smoke cigarettes or other tobacco products experience a lower risk of developing Parkinson's disease, but the mechanism by which this occurs is unclear. Our results showing molecular mimicry between TMV and human TOMM40L raise the question as to whether TMV has a potential role in smokers against Parkinson's disease development. The potential mechanisms of molecular mimicry between plant viruses and human disease should be further explored.
Systematic review and meta-analysis of the impact of loss of consciousness on clinical outcomes in mild traumatic brain injury
While loss of consciousness (LOC) is a key factor in assessing head injuries, its impact on clinical outcomes, including persistent post-concussive symptoms, mental health disorders, quality of life, and neurodegeneration, remains unclear. This systematic review explores the association of LOC in Mild Traumatic Brain Injury (mTBI) with clinical outcomes such as mental health, quality of life, and risk of neurodegenerative diseases. Comprehensive systematic review methodology; two electronic databases (PubMed, Embase) were systematically searched from January 1990 to December 2024. Pooled odds ratios (OR) were obtained using a random effects model. A total of 595 studies were assessed with 30 trials meeting inclusion criteria. The presence of LOC is associated with worsened clinical outcomes including persistent post-concussive symptoms (OR 1.89, 95% CI: 1.59–2.25), post-traumatic stress disorder (OR 1.81, 95% CI: 1.54–2.12), depression (OR 2.69, 95% CI: 2.10–3.43), and overall health-related quality of life (OR 1.84, 95% CI: 1.49–2.26). These findings suggest that the role of LOC in the outcomes of mTBI supports a higher risk of poorer short and long-term outcomes. Future studies may investigate variation in post-mTBI sequelae among those with similar LOC timelines.
MyD88 promotes myoblast fusion in a cell-autonomous manner
Myoblast fusion is an indispensable step for skeletal muscle development, postnatal growth, and regeneration. Myeloid differentiation primary response gene 88 (MyD88) is an adaptor protein that mediates Toll-like receptors and interleukin-1 receptor signaling. Here we report a cell-autonomous role of MyD88 in the regulation of myoblast fusion. MyD88 protein levels are increased during in vitro myogenesis and in conditions that promote skeletal muscle growth in vivo. Deletion of MyD88 impairs fusion of myoblasts without affecting their survival, proliferation, or differentiation. MyD88 regulates non-canonical NF-κB and canonical Wnt signaling during myogenesis and promotes skeletal muscle growth and overload-induced myofiber hypertrophy in mice. Ablation of MyD88 reduces myofiber size during muscle regeneration, whereas its overexpression promotes fusion of exogenous myoblasts to injured myofibers. Our study shows that MyD88 modulates myoblast fusion and suggests that augmenting its levels may be a therapeutic approach to improve skeletal muscle formation in degenerative muscle disorders. Myoblast fusion is essential for skeletal muscle development and regeneration. Here the authors show that MyD88 is upregulated during myogenesis and during muscle growth, signals via the NF-κB and Wnt pathways, and that its expression modulates myoblast fusion and myofiber size in mice.
Mutant and curli-producing E. coli enhance the disease phenotype in a hSOD1-G93A mouse model of ALS
The gut microbiome is a potential non-genetic contributing factor for Amyotrophic Lateral Sclerosis. Differences in gut microbial communities have been detected between ALS subjects and healthy controls, including an increase in Escherichia coli in ALS subjects. E. coli and other gram-negative bacteria produce curli proteins, which are functional bacterial amyloids. We examined whether long-term curli overexposure in the gut can exacerbate the development and progression of ALS. We utilized the slow-developing hSOD1-G93A mouse model of ALS with their C57BL/6J WT littermate controls, including males and females, with a total of 91 animals. These mice were on a normal chow diet and fed curli-producing or curli-nonproducing (mutant) E. coli in applesauce (vehicle) 3 times/week, from 1 through 7 months of age. Male hSOD1 mice demonstrated gradual slowing in running speed month 4 onwards, while females exhibited no signs of locomotive impairment even at 7 months of age. Around the same time, male hSOD1 mice showed a gradual increase in frequency of peripheral CD19 + B cells. Among the male hSOD1 group, chronic gut exposure to curli-producing E. coli led to significant shifts in α- and β-diversities. Curli-exposed males showed suppression of immune responses in circulation, but an increase in markers of inflammation, autophagy and protein turnover in skeletal muscle. Some of these markers were also changed in mutant E. coli -exposed mice, including astrogliosis in the brainstem and demyelination in the lumbar spinal cord. Overall, chronic overexposure to a commensal bacteria like E. coli led to distant organ pathology in our model, without the presence of a leaky gut at 6 months. Mechanisms underlying gut-distant organ communication are of tremendous interest to all disciplines.
Oral Cnm-positive Streptococcus Mutans Expressing Collagen Binding Activity is a Risk Factor for Cerebral Microbleeds and Cognitive Impairment
Cerebral microbleeds (CMBs) are an important risk factor for stroke and dementia. We have shown that the collagen binding surface Cnm protein expressed on cnm -positive Streptococcus mutans is involved in the development of CMBs. However, whether the collagen binding activity of cnm -positive S. mutans is related to the nature of the CMBs or to cognitive impairment is unclear. Two-hundred seventy nine community residents (70.0 years) were examined for the presence or absence of cnm -positive S. mutans in the saliva by PCR and collagen binding activity, CMBs, and cognitive function were evaluated. Cnm-positive S. mutans was detected more often among subjects with CMBs (p < 0.01) than those without. The risk of CMBs was significantly higher (odds ratio = 14.3) in the group with S. mutans expressing collagen binding activity, as compared to the group without that finding. Deep CMBs were more frequent (67%) and cognitive function was lower among subjects with cnm -positive S. mutans expressing collagen binding activity. This work supports the role of oral health in stroke and dementia and proposes a molecular mechanism for the interaction.