Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
6
result(s) for
"García-Betanzos, Claudia I."
Sort by:
Changes in Collagen across Pork Tenderloin during Marination with Rosehip Nanocapsules
by
Ojeda-Piedra, Sergio A.
,
Mendoza-Elvira, Susana E.
,
Zambrano-Zaragoza, María L.
in
Amino acids
,
Antioxidants
,
characterization
2024
The objective of this study was to prepare zein–gum Arabic nanocapsules with rosehip oil (NC-RH), apply them to pork tenderloin, and analyze the changes in collagen structure under different conditions (pH 6.5 and 4.0) and temperatures (25 °C and 4 °C). NC-RHs were prepared using the nanoprecipitation method. Nanocapsules had a particle size of 423 ± 4.1 nm, a polydispersity index of 0.125 ± 3.1, a zeta potential value of −20.1 ± 0.41 mV, an encapsulation efficiency of 75.84 ± 3.1%, and backscattering (ΔBS = 10%); the antioxidant capacity of DPPH was 1052 ± 4.2 µM Eq Trolox and the radical scavenging capacity was 84 ± 0.4%. The dispersions exhibited Newtonian behavior at 25 °C and 4 °C. Incorporating NC-RH into acid marination benefited the tenderness, water-holding capacity, and collagen swelling, and favored changes in myofibrillar proteins corroborated with histological tests. The conditions with the best changes in pork tenderloin were a pH of 4.0 at 4 °C with an NC-RH-administered 11.47 ± 2.2% collagen area. Incorporating rosehip nanocapsules modifies collagen fibers and can be applied in pork marinades to increase the shelf life of a functional product.
Journal Article
Nano-Encapsulated Essential Oils as a Preservation Strategy for Meat and Meat Products Storage
by
Ojeda-Piedra, Sergio A.
,
Real-Sandoval, Samantha A.
,
García-Betanzos, Claudia I.
in
Amino acids
,
Anti-Infective Agents - pharmacology
,
Antimicrobial agents
2022
Consumers today demand the use of natural additives and preservatives in all fresh and processed foods, including meat and meat products. Meat, however, is highly susceptible to oxidation and microbial growth that cause rapid spoilage. Essential oils are natural preservatives used in meat and meat products. While they provide antioxidant and antimicrobial properties, they also present certain disadvantages, as their intense flavor can affect the sensory properties of meat, they are subject to degradation under certain environmental conditions, and have low solubility in water. Different methods of incorporation have been tested to address these issues. Solutions suggested to date include nanotechnological processes in which essential oils are encapsulated into a lipid or biopolymer matrix that reduces the required dose and allows the formation of modified release systems. This review focuses on recent studies on applications of nano-encapsulated essential oils as sources of natural preservation systems that prevent meat spoilage. The studies are critically analyzed considering their effectiveness in the nanostructuring of essential oils and improvements in the quality of meat and meat products by focusing on the control of oxidation reactions and microbial growth to increase food safety and ensure innocuity.
Journal Article
Study of Candelilla Wax Concentrations on the Physical Properties of Edible Nanocoatings as a Function of Support Polysaccharides
by
Ojeda-Piedra, Sergio A.
,
Ulloa-Saavedra, Araceli
,
García-Betanzos, Claudia I.
in
Analysis
,
Candelilla wax
,
Carboxymethyl cellulose
2023
Solid lipid nanoparticles (SLN) based on candelilla wax were prepared using the hot homogenization technique. The resulting suspension had monomodal behavior with a particle size of 809–885 nm; polydispersity index < 0.31, and zeta potential of −3.5 mV 5 weeks after monitoring. The films were prepared with SLN concentrations of 20 and 60 g/L, each with a plasticizer concentration of 10 and 30 g/L; the polysaccharide stabilizers used were either xanthan gum (XG) or carboxymethyl cellulose (CMC) at 3 g/L. The effects of temperature, film composition, and relative humidity on the microstructural, thermal, mechanical, and optical properties, as well as the water vapor barrier, were evaluated. Higher amounts of SLN and plasticizer gave the films greater strength and flexibility due to the influence of temperature and relative humidity. The water vapor permeability (WVP) was lower when 60 g/L of SLN was added to the films. The arrangement of the SLN in the polymeric networks showed changes in the distribution as a function of the concentrations of the SLN and plasticizer. The total color difference (ΔE) was greater when the content of the SLN was increased, with values of 3.34–7.93. Thermal analysis showed an increase in the melting temperature when a higher SLN content was used, whereas a higher plasticizer content reduced it. Edible films with the most appropriate physical properties for the packaging, shelf-life extension, and improved quality conservation of fresh foods were those made with 20 g/L of SLN, 30 g/L of glycerol, and 3 g/L of XG.
Journal Article
The Functionalization of Nanostructures and Their Potential Applications in Edible Coatings
by
Cornejo-Villegas, María
,
Zambrano-Zaragoza, María
,
González-Reza, Ricardo
in
Addition polymerization
,
Antiinfectives and antibacterials
,
Antioxidants
2018
Nowadays, edible coatings incorporated with nanostructures as systems of controlled release of flavors, colorants and/or antioxidants and antimicrobial substances, also used for thermal and environmental protection of active compounds, represent a gap of opportunity to increase the shelf life of food highly perishable, as well as for the development of new products. These functionalized nanostructures have the benefit of incorporating natural substances obtained from the food industry that are rich in polyphenols, dietary fibers, and antimicrobial substances. In addition, the polymers employed on its preparation, such as polysaccharides, solid lipids and proteins that are low cost and developed through sustainable processes, are friendly to the environment. The objective of this review is to present the materials commonly used in the preparation of nanostructures, the main ingredients with which they can be functionalized and used in the preparation of edible coatings, as well as the advances that these structures have represented when used as controlled release systems, increasing the shelf life and promoting the development of new products that meet the characteristics of functionality for fresh foods ready to eat.
Journal Article
Recent Developments and Applications of Nanosystems in the Preservation of Meat and Meat Products
by
Zambrano-Zaragoza, María
,
Ulloa-Saavedra, Araceli
,
Velasco-Bejarano, Benjamín
in
Additives
,
Antimicrobial agents
,
antimicrobial effect
2022
Due to their high water, lipid, and protein content, meat and meat products are highly perishable. The principal spoilage mechanisms involved are protein and lipid oxidation and deterioration caused by microbial growth. Therefore, efforts are ongoing to ensure food safety and increase shelf life. The development of low-cost, innovative, eco-friendly approaches, such as nanotechnology, using non-toxic, inexpensive, FDA-approved ingredients is reducing the incorporation of chemical additives while enhancing effectiveness and functionality. This review focuses on advances in the incorporation of natural additives that increase the shelf life of meat and meat products through the application of nanosystems. The main solvent-free preparation methods are reviewed, including those that involve mixing organic–inorganic or organic–organic compounds with such natural substances as essential oils and plant extracts. The performance of these additives is analyzed in terms of their antioxidant effect when applied directly to meat as edible coatings or marinades, and during manufacturing processes. The review concludes that nanotechnology represents an excellent option for the efficient design of new meat products with enhanced characteristics.
Journal Article
The Evaluation of Mechanical, Thermal, Optical and Microstructural Properties of Edible Films with Solid Lipid Nanoparticles-Xanthan Gum Stored at Different Temperatures and Relative Humidities
by
de la Luz Zambrano-Zaragoza, María
,
García-Betanzos, Claudia Idalid
,
Del Real L, Alicia
in
Agriculture
,
Biotechnology
,
Chemistry
2016
Solid lipid nanoparticles (SLN) were obtained using the hot homogenization method and incorporated into a xanthan gum matrix (XG) to prepare edible films. The effects of SLN content (60, 65, 70, and 75 g/L) on the mechanical, color, thermal and microstructural properties, and water vapor permeability (WVP) were studied. The SLN film-forming systems remained stable for 7 weeks. Particle size was in the range of 222–257 nm. The mechanical properties of the films improved significantly when the SLN were introduced into the polymeric network to provide greater strength and flexibility with elongation at breaking of 2–9 %, affected by temperature (4–25 °C), SLN concentration (60–75 g/L), and relative humidity (60–90 %). WVP was lower when edible films based on XG were incorporated with SLN at values of 0.50–0.70 g m-2 h-1 kPa
−1
. The distribution of the SLN in the XG matrix was observed under scanning electron microscopy and showed changes in the arrangement as a function of SLN concentration. This explains the positive effect on the properties of the film of SLN-XG at 60 and 65 g/L. Total color difference (ΔE) increased with SLN content at values of 3.5–14. Thermal analysis showed that higher SLN content increased the melting temperature, while the plasticizer reduced it.
Journal Article