Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
21
result(s) for
"Hafner, Hannah"
Sort by:
Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement
2020
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6C
high
monocytes infiltrate the nerve first and rapidly give way to Ly6C
negative
inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient (
Csf2
-/-
) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Journal Article
The injured sciatic nerve atlas (iSNAT), insights into the cellular and molecular basis of neural tissue degeneration and regeneration
by
Finneran, Matthew C
,
Passino, Ryan
,
Corfas, Gabriel
in
Analysis
,
Animal experimentation
,
Animals
2022
Upon trauma, the adult murine peripheral nervous system (PNS) displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single-cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1 day, 3 days, and 7 days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac with a high glycolytic flux dominate the early injury response and rapidly give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood–nerve barrier, proliferation of endoneurial and perineurial stromal cells, and entry of opsonizing serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with
Sarm1
-/-
mice, in which Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in
Sarm1
-/-
mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand–receptor interactions. Our longitudinal analysis represents a new resource for neural tissue regeneration, reveals location- specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT):
https://cdb-rshiny.med.umich.edu/Giger_iSNAT/
.
Journal Article
Lactational High-Fat Diet Exposure Programs Metabolic Inflammation and Bone Marrow Adiposity in Male Offspring
by
Zhu, Allen
,
Gregg, Brigid
,
Carlson, Zach
in
adipose tissue
,
Adipose Tissue - metabolism
,
Adipose Tissue - physiopathology
2019
Overnutrition during critical windows of development plays a significant role in life-long metabolic disease risk. Early exposure to excessive nutrition may result in altered programming leading to increased susceptibility to obesity, inflammation, and metabolic complications. This study investigated the programming effects of high-fat diet (HFD) exposure during the lactation period on offspring adiposity and inflammation. Female C57Bl/6J dams were fed a normal diet or a 60% HFD during lactation. Offspring were weaned onto a normal diet until 12 weeks of age when half were re-challenged with HFD for 12 weeks. Metabolic testing was performed throughout adulthood. At 24 weeks, adipose depots were isolated and evaluated for macrophage profiling and inflammatory gene expression. Males exposed to HFD during lactation had insulin resistance and glucose intolerance as adults. After re-introduction to HFD, males had increased weight gain and worsened insulin resistance and hyperglycemia. There was increased infiltration of pro-inflammatory CD11c+ adipose tissue macrophages, and bone marrow was primed to produce granulocytes and macrophages. Bone density was lower due to enhanced marrow adiposity. This study demonstrates that maternal HFD exposure during the lactational window programs offspring adiposity, inflammation, and impaired glucose homeostasis.
Journal Article
Islet Dysfunction in a Novel Transgenic Model of T Cell Insulitis
2021
The newly established CD3FLAG-mIR transgenic mouse model on a C57Bl/6 background has a FLAG tag on the mouse Insulin Receptor (mIR), specifically on T cells, as the FLAG-tagged mIR gene was engineered behind CD3 promoter and enhancer. The IR is a chemotactic molecule for insulin and the Flag-tagged mIR T cells in the BL/6-CD3FLAGmIR transgenic mice can migrate into the pancreas, as shown by immunofluorescent staining. While the transgenic mice do not become diabetic, there are phenotypic and metabolic changes in the islets. The transgenic islets become enlarged and disorganized by 15 weeks and those phenotypes continue out to 35 weeks of age. We examined the islets by RT-PCR for cell markers, ER stress markers, beta cell proliferation markers, and cytokines, as well as measuring serum insulin and insulin content in the pancreas at 15, 25, and 35 weeks of age. In transgenic mice, insulin in serum was increased at 15 weeks of age and glucose intolerance developed by 25 weeks of age. Passage of transgenic spleen cells into C57Bl/6 RAG−/− mice resulted in enlarged and disorganized islets with T infiltration by 4 to 5 weeks post-transfer, replicating the transgenic mouse studies. Therefore, migration of non-antigen-specific T cells into islets has ramifications for islet organization and function.
Journal Article
Short Term Changes in Dietary Fat Content and Metformin Treatment During Lactation Impact Milk Composition and Mammary Gland Morphology
2022
Maternal health and diet can have important consequences for offspring nutrition and metabolic health. During lactation, signals are communicated from the mother to the infant through milk via macronutrients, hormones, and bioactive molecules. In this study we designed experiments to probe the mother-milk-infant triad in the condition of normal maternal health and upon exposure to high fat diet (HFD) with or without concurrent metformin exposure. We examined maternal characteristics, milk composition and offspring metabolic parameters on postnatal day 16, prior to offspring weaning. We found that lactational HFD increased maternal adipose tissue weight, mammary gland adipocyte size, and altered milk lipid composition causing a higher amount of omega-6 (n6) long chain fatty acids and lower omega-3 (n3). Offspring of HFD dams were heavier with more body fat during suckling. Metformin (Met) exposure decreased maternal blood glucose and several milk amino acids. Offspring of met dams were smaller during suckling. Gene expression in the lactating mammary glands was impacted to a greater extent by metformin than HFD, but both metformin and HFD altered genes related to muscle contraction, indicating that these genes may be more susceptible to lactational stressors. Our study demonstrates the impact of common maternal exposures during lactation on milk composition, mammary gland function and offspring growth with metformin having little capacity to rescue the offspring from the effects of a maternal HFD during lactation.
Journal Article
Gestational exposure to metformin programs improved glucose tolerance and insulin secretion in adult male mouse offspring
2018
Pancreatic β-cells are exquisitely sensitive to developmental nutrient stressors, and alterations in nutrient sensing pathways may underlie changes observed in these models. Here we developed a mouse model of
in utero
exposure to the anti-diabetic agent metformin. We have previously shown that this exposure increases offspring pancreatic β-cell mass at birth. We hypothesized that adult offspring would have improved metabolic parameters as a long-term outcome of metformin exposure. Virgin dams were given 5 mg/mL metformin in their water from E0.5 to delivery at E18.5. Body weight, glucose tolerance, insulin tolerance and glucose stimulated insulin secretion were analyzed in the offspring. When male offspring of dams given metformin during gestation were tested as adults they had improved glucose tolerance and enhanced insulin secretion
in vivo
as did their islets
in vitro
. Enhanced insulin secretion was accompanied by changes in intracellular free calcium responses to glucose and potassium chloride, possibly mediated by increased L channel expression. Female offspring exhibited improved glucose tolerance at advanced ages. In conclusion, in this model
in utero
metformin exposure leads to improved offspring metabolism in a gender-specific manner. These findings suggest that metformin applied during gestation may be an option for reprogramming metabolism in at risk groups.
Journal Article
SEL1L-HRD1 ER-Associated Degradation Facilitates Prohormone Convertase 2 Maturation and Glucagon Production in Islet α Cells
2025
Proteolytic cleavage of proglucagon by prohormone convertase 2 (PC2) is required for islet α cells to generate glucagon. However, the regulatory mechanisms underlying this process remain largely unclear. Here, we report that SEL1L-HRD1 endoplasmic reticulum (ER)-associated degradation (ERAD), a highly conserved protein quality control system responsible for clearing misfolded proteins from the ER, plays a key role in glucagon production by regulating turnover of the nascent proform of the PC2 enzyme (proPC2). Using a mouse model with SEL1L deletion in proglucagon-expressing cells, we observed a progressive decline in stimulated glucagon secretion and a reduction in pancreatic glucagon content. Mechanistically, we found that endogenous proPC2 is a substrate of SEL1L-HRD1 ERAD, and that degradation of misfolded proPC2 ensures the maturation of activation-competent proPC2 protein. These findings identify ERAD as a novel regulator of PC2 biology and an essential mechanism for maintaining α cell function.
Journal Article
Sarm1 is not necessary for activation of neuron-intrinsic growth programs yet required for the Schwann cell repair response and peripheral nerve regeneration
2024
Upon peripheral nervous system (PNS) injury, severed axons undergo rapid SARM1-dependent Wallerian degeneration (WD). In mammals, the role of SARM1 in PNS regeneration, however, is unknown. Here we demonstrate that
is not required for axotomy induced activation of neuron-intrinsic growth programs and axonal growth into a nerve crush site. However, in the distal nerve,
is necessary for the timely induction of the Schwann cell (SC) repair response, nerve inflammation, myelin clearance, and regeneration of sensory and motor axons. In
mice, regenerated fibers exhibit reduced axon caliber, defective nerve conduction, and recovery of motor function is delayed. The growth hostile environment of
distal nerve tissue was demonstrated by grafting of
nerve into WT recipients. SC lineage tracing in injured WT and
mice revealed morphological differences. In the
distal nerve, the appearance of p75
+, c-Jun+ SCs is significantly delayed.
, p75
and c-Jun upregulation in
nerves can be rescued by pharmacological inhibition of ErbB kinase. Together, our studies show that
is not necessary for the activation of neuron intrinsic growth programs but in the distal nerve is required for the orchestration of cellular programs that underlie rapid axon extension.
Journal Article
The Injured Sciatic Nerve Atlas (iSNAT), Insights into the Cellular and Molecular Basis of Neural Tissue Degeneration and Regeneration
2022
Upon trauma, the adult murine PNS displays a remarkable degree of spontaneous anatomical and functional regeneration. To explore extrinsic mechanisms of neural repair, we carried out single cell analysis of naïve mouse sciatic nerve, peripheral blood mononuclear cells, and crushed sciatic nerves at 1-day, 3-days, and 7- days following injury. During the first week, monocytes and macrophages (Mo/Mac) rapidly accumulate in the injured nerve and undergo extensive metabolic reprogramming. Proinflammatory Mo/Mac in the injured nerve show high glycolytic flux compared to Mo/Mac in blood and dominate the early injury response. They subsequently give way to inflammation resolving Mac, programmed toward oxidative phosphorylation. Nerve crush injury causes partial leakiness of the blood-nerve-barrier, proliferation of endoneurial and perineurial stromal cells, and accumulation of select serum proteins. Micro-dissection of the nerve injury site and distal nerve, followed by single-cell RNA-sequencing, identified distinct immune compartments, triggered by mechanical nerve wounding and Wallerian degeneration, respectively. This finding was independently confirmed with Sarm1-/- mice, where Wallerian degeneration is greatly delayed. Experiments with chimeric mice showed that wildtype immune cells readily enter the injury site in Sarm1-/- mice, but are sparse in the distal nerve, except for Mo. We used CellChat to explore intercellular communications in the naïve and injured PNS and report on hundreds of ligand-receptor interactions. Our longitudinal analysis represents a new resource for nerve regeneration, reveals location specific immune microenvironments, and reports on large intercellular communication networks. To facilitate mining of scRNAseq datasets, we generated the injured sciatic nerve atlas (iSNAT): https://cdb-rshiny.med.umich.edu/Giger_iSNAT/ Competing Interest Statement Except for Gabriel Corfas, the authors declare no competing financial or non-financial interests. Gabriel Corfas is a scientific founder of Decibel Therapeutics; he has an equity interest in and has received compensation for consulting. The company was not involved in this study.
Activation of Adipocyte mTORC1 Increases Milk Lipids in a Mouse Model of Lactation
2021
Human milk is the recommended nutrient source for newborns. The mammary gland comprises multiple cell types including epithelial cells and adipocytes. The contributions of mammary adipocytes to breast milk composition and the intersections between mammary nutrient sensing and milk lipids are not fully understood. A major nutrient sensor in most tissues is the mechanistic target of rapamycin 1 (mTORC1). To assess the role of excess nutrient sensing on mammary gland structure, function, milk composition, and offspring weights, we used an Adiponectin-Cre driven Tsc1 knockout model of adipocyte mTORC1 hyperactivation. Our results show that the knockout dams have higher milk fat contributing to higher milk caloric density and heavier offspring weight during lactation. Additionally, milk of knockout dams displayed a lower percentage of saturated fatty acids, higher percentage of monounsaturated fatty acids, and a lower milk ω6: ω3 ratio driven by increases in Docosahexaenoic acid (DHA). Mammary gland gene expression analyses identified changes in eicosanoid metabolism, adaptive immune function and contractile gene expression. Together, these results suggest a novel role of adipocyte mTORC1 in mammary gland function and morphology, milk composition, and offspring growth. Competing Interest Statement The authors have declared no competing interest. Footnotes * http://bridgeslab.github.io/TissueSpecificTscKnockouts/ * https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE175620