Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
543
result(s) for
"Hartmann, Markus"
Sort by:
Impact assessment of the European Clinical Trials Directive: a longitudinal, prospective, observational study analyzing patterns and trends in clinical drug trial applications submitted since 2001 to regulatory agencies in six EU countries
2012
Background
Shifts in clinical trial application rates over time indicate if the attractiveness of a country or region for the conduct of clinical trials is growing or decreasing. The purpose of this observational study was to track changes in drug trial application patterns across several EU countries in order to analyze the medium-term impact of the EU Clinical Trials Directive 2001/20/EC on the conduct of drug trials.
Methods
Rates of Clinical Trial Applications (CTA) for studies with medicinal products in those six countries in the EU, which authorize on average more than 500 trials per year, were analyzed. Publicly available figures on the number of annually submitted CTA, the distribution of trials per phase and the type of sponsorship were tracked; missing data were provided by national drug agencies.
Results
Since 2001, the number of CTA in Italy and Spain increased significantly (5.0 and 2.5% average annual growth). For Italy, the gain was driven by a strong increase of applications from academic trial sponsors; Spain's growth was due to a rise in trials run by commercial sponsors. The Netherlands, Germany, France and the UK saw a decline (1.9, 2.3, 3.0 and 5.3% average annual diminution; significant (
P
< 0.05) except for Germany) in clinical drug trials. The decrease in the UK was caused by a sharp fall in academic trial activities. Across the six analyzed countries, no EU-wide trial-phase-specific patterns or trends were observed.
Conclusions
The EU Clinical Trials Directive 2001/20/EC did not achieve the harmonization of clinical trial requirements across Europe. Rather, it resulted in the leveling of clinical trial activities caused by a continuing decrease in CTA rates in the Netherlands, Germany, France and the UK. Southern European countries, Italy and Spain, benefited to some extent from policy changes introduced by the Directive. In Italy's case, national funding measures helped to considerably promote the conduct of non-commercial trials. On the other hand, the EU Directive-driven transition from liberal policy environments, based on non-explicit trial approval through notifications, towards red-taped processes of trial authorization, contributed to the decreases in trial numbers in Germany and the UK. In the latter case, national research governance concerns had a share in the country's marked decline. However, different EU member states successfully developed best practices, which a new European legislation should take into consideration to resume Europe's attractiveness and international competitiveness for the conduct of clinical trials.
Journal Article
THE ARCTIC CLOUD PUZZLE
by
Brückner, Marlen
,
Gottschalk, Matthias
,
Wiedensohler, Alfred
in
Aerodynamics
,
Aerosol effects
,
Aerosol particles
2019
Clouds play an important role in Arctic amplification. This term represents the recently observed enhanced warming of the Arctic relative to the global increase of near-surface air temperature. However, there are still important knowledge gaps regarding the interplay between Arctic clouds and aerosol particles, and surface properties, as well as turbulent and radiative fluxes that inhibit accurate model simulations of clouds in the Arctic climate system. In an attempt to resolve this so-called Arctic cloud puzzle, two comprehensive and closely coordinated field studies were conducted: the Arctic Cloud Observations Using Airborne Measurements during Polar Day (ACLOUD) aircraft campaign and the Physical Feedbacks of Arctic Boundary Layer, Sea Ice, Cloud and Aerosol (PASCAL) ice breaker expedition. Both observational studies were performed in the framework of the German Arctic Amplification: Climate Relevant Atmospheric and Surface Processes, and Feedback Mechanisms (AC) project. They took place in the vicinity of Svalbard, Norway, in May and June 2017. ACLOUD and PASCAL explored four pieces of the Arctic cloud puzzle: cloud properties, aerosol impact on clouds, atmospheric radiation, and turbulent dynamical processes. The two instrumented Polar 5 and Polar 6 aircraft; the icebreaker Research Vessel (R/V) Polarstern; an ice floe camp including an instrumented tethered balloon; and the permanent ground-based measurement station at Ny-Ålesund, Svalbard, were employed to observe Arctic low- and mid-level mixed-phase clouds and to investigate related atmospheric and surface processes. The Polar 5 aircraft served as a remote sensing observatory examining the clouds from above by downward-looking sensors; the Polar 6 aircraft operated as a flying in situ measurement laboratory sampling inside and below the clouds. Most of the collocated Polar 5/6 flights were conducted either above the R/V Polarstern or over the Ny-Ålesund station, both of which monitored the clouds from below using similar but upward-looking remote sensing techniques as the Polar 5 aircraft. Several of the flights were carried out underneath collocated satellite tracks. The paper motivates the scientific objectives of the ACLOUD/PASCAL observations and describes the measured quantities, retrieved parameters, and the applied complementary instrumentation. Furthermore, it discusses selected measurement results and poses critical research questions to be answered in future papers analyzing the data from the two field campaigns.
Journal Article
Ice-nucleating particle concentrations unaffected by urban air pollution in Beijing, China
by
Grawe, Sarah
,
Liu, Zirui
,
Hartmann, Markus
in
Air pollution
,
Air temperature
,
Anthropogenic factors
2018
Exceedingly high levels of PM2.5 with complex chemical composition occur frequently in China. It has been speculated
whether anthropogenic PM2.5 may significantly contribute to ice-nucleating particles (INP). However, few studies have focused on the
ice-nucleating properties of urban particles. In this work, two ice-nucleating droplet arrays have been used to determine the
atmospheric number concentration of INP (NINP) in the range from −6 to −25 ∘C in Beijing. No
correlations between NINP and either PM2.5 or black carbon mass concentrations were found, although both
varied by more than a factor of 30 during the sampling period. Similarly, there were no correlations between NINP and
either total particle number concentration or number concentrations for particles with diameters >500 nm. Furthermore,
there was no clear difference between day and night samples. All these results indicate that Beijing air pollution did not increase or
decrease INP concentrations in the examined temperature range above values observed in nonurban areas; hence, the background INP
concentrations might not be anthropogenically influenced as far as urban air pollution is concerned, at least in the examined
temperature range.
Journal Article
The Lacunocanalicular Network is Denser in C57BL/6 Compared to BALB/c Mice
by
van Tol, Alexander
,
Hartmann, Markus A
,
Weinkamer, Richard
in
Bone density
,
Bone matrix
,
Calcium imaging
2024
The lacunocanalicular network (LCN) is an intricate arrangement of cavities (lacunae) and channels (canaliculi), which permeates the mineralized bone matrix. In its porosity, the LCN accommodates the cell network of osteocytes. These two nested networks are attributed a variety of essential functions including transport, signaling, and mechanosensitivity due to load-induced fluid flow through the LCN. For a more quantitative assessment of the networks’ function, the three-dimensional architecture has to be known. For this reason, we aimed (i) to quantitatively characterize spatial heterogeneities of the LCN in whole mouse tibial cross-sections of BALB/c mice and (ii) to analyze differences in LCN architecture by comparison with another commonly used inbred mouse strain, the C57BL/6 mouse. Both tibiae of five BALB/c mice (female, 26-week-old) were stained using rhodamine 6G and whole tibiae cross-sections were imaged using confocal laser scanning microscopy. Using image analysis, the LCN was quantified in terms of density and connectivity and lacunar parameters, such as lacunar degree, volume, and shape. In the same tibial cross-sections, the calcium content was measured using quantitative backscattered electron imaging (qBEI). A structural analysis of the LCN properties showed that spatially denser parts of the LCN are mainly due to a higher density of branching points in the network. While a high intra-individual variability of network density was detected within the cortex, the inter-individual variability between different mice was low. In comparison to C57BL/6J mice, BALB/c mice showed a distinct lower canalicular density. This reduced network was already detectable on a local network level with fewer canaliculi emanating from lacunae. Spatial correlation with qBEI images demonstrated that bone modeling resulted in disruptions in the network architecture. The spatial heterogeneity and differences in density of the LCN likely affects the fluid flow within the network and therefore bone’s mechanoresponse to loading.
Journal Article
Annual variability of ice-nucleating particle concentrations at different Arctic locations
2019
Number
concentrations of ice-nucleating particles (NINP) in the Arctic
were derived from ground-based filter samples. Examined samples had been
collected in Alert (Nunavut, northern Canadian archipelago on Ellesmere
Island), Utqiaġvik, formerly known as Barrow (Alaska), Ny-Ålesund
(Svalbard), and at the Villum Research Station (VRS; northern Greenland). For
the former two stations, examined filters span a full yearly cycle. For VRS,
10 weekly samples, mostly from different months of one year, were included.
Samples from Ny-Ålesund were collected during the months from March until
September of one year. At all four stations, highest concentrations were
found in the summer months from roughly June to September. For those stations
with sufficient data coverage, an annual cycle can be seen. The spectra of
NINP observed at the highest temperatures, i.e., those obtained
for summer months, showed the presence of INPs that nucleate ice up to
−5 ∘C. Although the nature of these highly ice-active INPs could
not be determined in this study, it often has been described in the
literature that ice activity observed at such high temperatures originates
from the presence of ice-active material of biogenic origin. Spectra observed
at the lowest temperatures, i.e., those derived for winter months, were on
the lower end of the respective values from the literature on Arctic INPs or
INPs from midlatitude continental sites, to which a comparison is presented
herein. An analysis concerning the origin of INPs that were ice active at
high temperatures was carried out using back trajectories and satellite
information. Both terrestrial locations in the Arctic and the adjacent sea
were found to be possible source areas for highly active INPs.
Journal Article
Terrestrial or marine – indications towards the origin of ice-nucleating particles during melt season in the European Arctic up to 83.7° N
2021
Ice-nucleating particles (INPs) initiate the primary ice formation in clouds at temperatures above ca. −38 ∘C and have an impact on precipitation formation, cloud optical properties, and cloud persistence. Despite their roles in both weather and climate, INPs are not well characterized, especially in remote regions such as the Arctic.
We present results from a ship-based campaign to the European Arctic during May to July 2017. We deployed a filter sampler and a continuous-flow diffusion chamber for offline and online INP analyses, respectively. We also investigated the ice nucleation properties of samples from different environmental compartments, i.e., the sea surface microlayer (SML), the bulk seawater (BSW), and fog water.
Concentrations of INPs (NINP) in the air vary between 2 to 3 orders of magnitudes at any particular temperature and are, except for the temperatures above −10 ∘C and below −32 ∘C, lower than in midlatitudes. In these temperature ranges, INP concentrations are the same or even higher than in the midlatitudes.
By heating of the filter samples to 95 ∘C for 1 h, we found a significant reduction in ice nucleation activity, i.e., indications that the INPs active at warmer temperatures are biogenic. At colder temperatures the INP population was likely dominated by mineral dust.
The SML was found to be enriched in INPs compared to the BSW in almost all samples. The enrichment factor (EF) varied mostly between 1 and 10, but EFs as high as 94.97 were also observed. Filtration of the seawater samples with 0.2 µm syringe filters led to a significant reduction in ice activity, indicating the INPs are larger and/or are associated with particles larger than 0.2 µm. A closure study showed that aerosolization of SML and/or seawater alone cannot explain the observed airborne NINP unless significant enrichment of INP by a factor of 105 takes place during the transfer from the ocean surface to the atmosphere.
In the fog water samples with −3.47 ∘C, we observed the highest freezing onset of any sample. A closure study connecting NINP in fog water and the ambient NINP derived from the filter samples shows good agreement of the concentrations in both compartments, which indicates that INPs in the air are likely all activated into fog droplets during fog events.
In a case study, we considered a situation during which the ship was located in the marginal sea ice zone and NINP levels in air and the SML were highest in the temperature range above −10 ∘C. Chlorophyll a measurements by satellite remote sensing point towards the waters in the investigated region being biologically active. Similar slopes in the temperature spectra suggested a connection between the INP populations in the SML and the air. Air mass history had no influence on the observed airborne INP population. Therefore, we conclude that during the case study collected airborne INPs originated from a local biogenic probably marine source.
Journal Article
Local anisotropy in mineralized fibrocartilage and subchondral bone beneath the tendon-bone interface
by
Hartmann, Markus A.
,
Ruffoni, Davide
,
Tits, Alexandra
in
631/1647/245/1847
,
639/166/985
,
639/301/54/994
2021
The enthesis allows the insertion of tendon into bone thanks to several remarkable strategies. This complex and clinically relevant location often features a thin layer of fibrocartilage sandwiched between tendon and bone to cope with a highly heterogeneous mechanical environment. The main purpose of this study was to investigate whether mineralized fibrocartilage and bone close to the enthesis show distinctive three-dimensional microstructural features, possibly to enable load transfer from tendon to bone. As a model, the Achilles tendon-calcaneus bone system of adult rats was investigated with histology, backscattered electron imaging and micro-computed tomography. The microstructural porosity of bone and mineralized fibrocartilage in different locations including enthesis fibrocartilage, periosteal fibrocartilage and bone away from the enthesis was characterized. We showed that calcaneus bone presents a dedicated protrusion of low porosity where the tendon inserts. A spatially resolved analysis of the trabecular network suggests that such protrusion may promote force flow from the tendon to the plantar ligament, while partially relieving the trabecular bone from such a task. Focusing on the tuberosity, highly specific microstructural aspects were highlighted. Firstly, the interface between mineralized and unmineralized fibrocartilage showed the highest roughness at the tuberosity, possibly to increase failure resistance of a region carrying large stresses. Secondly, fibrochondrocyte lacunae inside mineralized fibrocartilage, in analogy with osteocyte lacunae in bone, had a predominant alignment at the enthesis and a rather random organization away from it. Finally, the network of subchondral channels inside the tuberosity was highly anisotropic when compared to contiguous regions. This dual anisotropy of subchondral channels and cell lacunae at the insertion may reflect the alignment of the underlying collagen network. Our findings suggest that the microstructure of fibrocartilage may be linked with the loading environment. Future studies should characterize those microstructural aspects in aged and or diseased conditions to elucidate the poorly understood role of bone and fibrocartilage in enthesis-related pathologies.
Journal Article
Ice-nucleating particles in northern Greenland: annual cycles, biological contribution and parameterizations
2023
Ice-nucleating particles (INPs) can initiate ice formation in clouds at temperatures above −38 ∘C through heterogeneous ice nucleation. As a result, INPs affect cloud microphysical and radiative properties, cloud lifetime, and precipitation behavior and thereby ultimately the Earth's climate. Yet, little is known regarding the sources, abundance and properties of INPs, especially in remote regions such as the Arctic. In this study, 2-year-long INP measurements (from July 2018 to September 2020) at Villum Research Station in northern Greenland are presented. A low-volume filter sampler was deployed to collect filter samples for offline INP analysis. An annual cycle of INP concentration (NINP) was observed, and the fraction of heat-labile INPs was found to be higher in months with low to no snow cover and lower in months when the surface was well covered in snow (> 0.8 m). Samples were categorized into three different types based only on the slope of their INP spectra, namely into summer, winter and mix type. For each of the types a temperature-dependent INP parameterization was derived, clearly different depending on the time of the year. Winter and summer types occurred only during their respective seasons and were seen 60 % of the time. The mixed type occurred in the remaining 40 % of the time throughout the year. April, May and November were found to be transition months. A case study comparing April 2019 and April 2020 was performed. The month of April was selected because a significant difference in NINP was observed during these two periods, with clearly higher NINP in April 2020. In parallel to the observed differences in NINP, also a higher cloud-ice fraction was observed in satellite data for April 2020, compared to April 2019. NINP in the case study period revealed no clear dependency on either meteorological parameters or different surface types which were passed by the collected air masses. Overall, the results suggest that the coastal regions of Greenland were the main sources of INPs in April 2019 and 2020, most likely including both local terrestrial and marine sources.
Journal Article
Multi‐modal strain mapping of steel crack tips with micrometre spatial resolution
by
Brueckner, Dennis
,
Thimm, Matthias
,
Brandt, Robert
in
Crack propagation
,
Crack tips
,
Cyclic loads
2025
Due to their superior fatigue strength, martensitic steels are the material of choice for high cyclic loading applications such as coil springs. However, crack propagation is influenced by residual stresses and their interaction is poorly understood. In fact, linear elastic fracture mechanics predicts unphysical singularities in the strain around the crack tip. In this study, we have combined synchrotron‐based X‐ray diffraction, X‐ray fluorescence and optical microscopy to map the factual strain fields around crack tips with micrometre spatial resolution. X‐ray fluorescence and optical images were co‐registered to locate the crack in the X‐ray diffraction maps. Observed crystal recovery close to cracks confirmed that the diffraction signal originates at least in part from the cracks. The retrieved local strain field around the crack was further improved by averaging information over carefully selected diffraction peaks. This procedure provided strain maps around crack tips with a spatial resolution of about 1 µm and may enable heuristic predictions of further crack growth.
Multi‐modal measurements combining X‐ray diffraction, X‐ray fluorescence and optical microscopy allow dynamic crystal recovery effects around martensitic steel crack tips to be studied. The measured strain field around the crack tip shows a significant departure from the predictions of linear elastic fracture mechanics.
Journal Article
Composition and mixing state of atmospheric aerosols determined by electron microscopy: method development and application to aged Saharan dust deposition in the Caribbean boundary layer
by
Pöhlker, Christopher
,
Weinbruch, Stephan
,
Hartmann, Markus
in
Aerosol concentrations
,
Aerosol sampling
,
Aerosols
2018
The microphysical properties, composition and mixing state of mineral dust,
sea salt and secondary compounds were measured by active and passive aerosol
sampling, followed by electron microscopy and X-ray fluorescence in the
Caribbean marine boundary layer. Measurements were carried out at Ragged
Point, Barbados during June–July 2013 and August 2016. Techniques are
presented and evaluated, which allow for statements on atmospheric aerosol
concentrations and aerosol mixing state based on collected samples. It became
obvious that in the diameter range with the highest dust deposition the
deposition velocity models disagree by more than 2 orders of magnitude.
Aerosol at Ragged Point was dominated by dust, sea salt and soluble sulfates
in varying proportions. The contribution of sea salt was dependent on local wind
speed. Sulfate concentrations were linked to long-range transport from Africa and Europe, and
South America and the southern Atlantic Ocean. Dust sources were
located in western Africa. The dust silicate composition was not
significantly varied. Pure feldspar grains were 3 % of the silicate particles, of which about a third were K-feldspar. The average dust
deposition
observed was 10 mg m−2 d−1 (range of 0.5–47 mg m−2 d−1), of
which 0.67 mg m−2 d−1 was iron and 0.001 mg m−2 d−1
phosphorus. Iron deposition was mainly driven by silicate particles from
Africa. Dust particles were mixed internally to a minor fraction (10 %),
mostly with sea salt and less frequently with sulfate. It was estimated that
the average dust deposition velocity under ambient conditions is increased by the
internal mixture by 30 %–140 % for particles between 1 and 10 µm
dust aerodynamic diameter, with approximately 35 % at the mass median
diameter of deposition (7.0 µm). For this size, an effective
deposition velocity of 6.4 mm s−1 (geometric standard deviation of 3.1 over all
individual particles) was observed.
Journal Article