Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,418 result(s) for "He, Xinyuan"
Sort by:
NCAPD3 enhances Warburg effect through c-myc and E2F1 and promotes the occurrence and progression of colorectal cancer
Background NCAPD3 is one of the three non-SMC subunits of condensin II complex, which plays an important role in the chromosome condensation and segregation during mitosis. Notably, elevated levels of NCAPD3 are found in many somatic cancers. However, the clinical role, biological functions of NCAPD3 in cancers especially in colorectal cancer (CRC) and the underlying molecular mechanisms remain poorly elucidated. Methods Clinical CRC and adjacent normal tissues were used to confirm the expression of NCAPD3. The association of NCAPD3 expression with clinicopathological characteristics and patient outcomes were analyzed by using online database. In vivo subcutaneous tumor xenograft model, NCAPD3 gene knockout following azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced tumor mouse model, Co-IP, western blot, qRT-PCR, IHC, ChIP assays and cell functional assays were used to investigate the biological functions of NCAPD3 in CRC and the underlying molecular mechanisms. Results NCAPD3 was overexpressed in CRC tissues and positively correlated with poor prognosis of CRC patients. NCAPD3 knockout suppressed CRC development in AOM/DSS induced and xenograft mice models. Moreover, we found that NCAPD3 promoted aerobic glycolysis in CRC. Mechanistically, NCAPD3 up-regulated the level of c-Myc and interacted with c-Myc to recruit more c-Myc to the gene promoter of its downstream glycolytic regulators GLUT1, HK2, ENO1, PKM2 and LDHA, and finally enhanced cellular aerobic glycolysis. Also, NCAPD3 increased the level of E2F1 and interacted with E2F1 to recruit more E2F1 to the promoter regions of PDK1 and PDK3 genes, which resulted in the inhibition of PDH activity and TCA cycle. Conclusions Our data demonstrated that NCAPD3 promoted glucose metabolism reprogramming and enhanced Warburg effect in colorectal tumorigenesis and CRC progression. These findings reveal a novel mechanism underlying NCAPD3 mediated CRC cell growth and provide new targets for CRC treatment.
Vertical-Ordered Electrogenic Biofilms Engineered Through Substrate-Electric Field Synergy for Enhanced Microbial Fuel Cell Performance
Microbial fuel cell (MFC) is a novel and environmentally friendly technology for wastewater treatment and pollutant resource utilization. Although advances have been made in various aspects including electrode materials and synthetic biology approaches, the overall performance of MFC still requires improvement, with mass transfer efficiency and structural stability of biofilms emerging as key bottlenecks constraining their practical applications. This study investigated the regulation of substrate type and electrode potential during bioanode culture to optimize biofilm structure and enhance MFC performance. Results demonstrated that bioanodes cultured with glucose at −0.3 V formed vertically ordered biofilms that exhibited significant advantages in mass transfer characteristics, electrocatalytic activity, and structural stability. Under these culture conditions, enriched fermentative microorganisms facilitated the construction of porous biofilm scaffolds, while the electric field generated by the −0.3 V potential further induced vertical orientation and ordered arrangement of the biofilm. The superior mass transfer characteristics enabled the inner, middle, and outer layers of the biofilm to maintain high microbial activity (>50%), thereby maximizing the catalytic activity of electroactive microorganisms in each layer and enhancing biofilm structural stability. This study proposes a bioanode culture strategy centered on biofilm structural optimization, providing new theoretical foundations and technical pathways for achieving long-term stable and efficient MFC operation.
A chameleon AIEgen exhibiting six distinct yet tunable thermal and photoswitchable states
Seeking methods to realize multiple fluorescence changes in a single luminogenic system is of great importance for both chemistry and bionics research. Due to the lack of effective strategies and functional motifs, luminogens with multiple switching and controllable models are still scarce. Herein, we report a chromone-based aggregation-induced emission luminogen called Z -CDPM, which exhibit six distinct, tunable thermal and photoswitchable states, offering controllable thermochromic or photochromic behavior under varying conditions. Specifically, five different reactions are involved: reversible Z / E isomerization, irreversible cyclization and elimination under thermal treatment, and photoarrangement of Z -CDPM and its thermal cyclization product under UV irradiation. The relative independence of the switching states is effectively maintained. Experimental and theoretical analyses validate our design strategies and provide valuable insights into the detailed mechanisms of these reactions, and single crystals further confirm their structures. Additionally, practical applications, including multiple-colored images, quick response codes, and an advanced information encryption system, are developed to demonstrate the utility. This work thus provides effective strategies and structural motifs for the design of multiresponsive luminogens and multifunctional systems. Achieving multiple fluorescence changes in a single luminogenic system is desirable but challenging. Here, the authors report a chromone-based aggregation-induced emission luminogen, with six distinct thermal and photoswitchable states.
Multiple photofluorochromic luminogens via catalyst-free alkene oxidative cleavage photoreaction for dynamic 4D codes encryption
Controllable photofluorochromic systems with high contrast and multicolor in both solutions and solid states are ideal candidates for the development of dynamic artificial intelligence. However, it is still challenging to realize multiple photochromism within one single molecule, not to mention good controllability. Herein, we report an aggregation-induced emission luminogen TPE-2MO2NT that undergoes oxidation cleavage upon light irradiation and is accompanied by tunable multicolor emission from orange to blue with time-dependence. The photocleavage mechanism revealed that the self-generation of reactive oxidants driving the catalyst-free oxidative cleavage process. A comprehensive analysis of TPE-2MO2NT and other comparative molecules demonstrates that the TPE-2MO2NT molecular scaffold can be easily modified and extended. Further, the multicolor microenvironmental controllability of TPE-2MO2NT photoreaction within polymer matrices enables the fabrication of dynamic fluorescence images and 4D information codes, providing strategies for advanced controllable information encryption. Photochromic systems with high contrast and multiple colours are useful for responsive materials, but it is challenging to achieve multiple colours with one molecule. Here, the authors report a photochromic system controlled by oxidative cleavage on light irradiation.
Functional genetic encoding of sulfotyrosine in mammalian cells
Protein tyrosine O -sulfation (PTS) plays a crucial role in extracellular biomolecular interactions that dictate various cellular processes. It also involves in the development of many human diseases. Regardless of recent progress, our current understanding of PTS is still in its infancy. To promote and facilitate relevant studies, a generally applicable method is needed to enable efficient expression of sulfoproteins with defined sulfation sites in live mammalian cells. Here we report the engineering, in vitro biochemical characterization, structural study, and in vivo functional verification of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells. We further apply this chemical biology tool to cell-based studies on the role of a sulfation site in the activation of chemokine receptor CXCR4 by its ligand. Our work will not only facilitate cellular studies of PTS, but also paves the way for economical production of sulfated proteins as therapeutic agents in mammalian systems. Protein tyrosine O -sulfation is crucial for biomolecular interactions. Here the authors report in vitro engineering and in vivo validation of a tyrosyl-tRNA synthetase mutant for the genetic encoding of sulfotyrosine in mammalian cells.
A Power-Efficient 16-bit 1-MS/s Successive Approximation Register Analog-to-Digital Converter with Digital Calibration in 0.18 μm Complementary Metal Oxide Semiconductor
A power-efficient 16-bit 1-MS/s successive approximation register (SAR) analog-to-digital converter (ADC) is presented in this paper. High-bit sampling makes the bridge capacitance in the digital-to-analog converter (DAC) a unit one, eliminating fractional capacitance mismatch. The high-precision comparator is composed of a four-stage preamplifier and a strong-arm latch, with auto-zeroing used to mitigate input offset further. Digital foreground calibration based on low-bit weight is implemented to correct DAC capacitance mismatch. The post-layout simulation results show that the core ADC achieves 95.61 dB SNDR and 105.1 dB SFDR with calibration, consuming 5.4 mW power under a 3.3 V supply voltage, corresponding to a Schreier figure of merit (FoM) of 175.3 dB. The ADC core area is 1.06 mm2 in the 180 nm CMOS technology.
Most excess years of potential life loss among individuals with cirrhosis during the pandemic were not related to COVID-19
Correspondence to Prof. Mindie H Nguyen, Stanford University Medical Center; Division of Gastroenterology and Hepatology, Stanford University, Palo Alto, CA 94305, USA; mindiehn@stanford.edu ; Prof. Fanpu Ji, Department of Infectious Diseases, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an, Shaanxi, China; jifanpu1979@163.com We read with interest the article by Dufour et al.1 The authors were to be commended for their comprehensive review on the presentations, pathophysiology and prognosis of COVID-19 in patients with chronic liver disease. Notably, the authors included data from multicentre and nationwide cohort studies to suggest decompensated cirrhosis as an independent risk factor for severe COVID-19 and death.1–6 However, while excess death from COVID-19 among patients with cirrhosis is important, the non-COVID-19-related excess death is integral in considering the degree of care disruption and delayed presentation, especially for those before 65 years of age. [...]using the CDC WONDER website of the US National Vital Statistic System, which includes over 99% of deaths annually, we evaluated the percentage of excess years of potential life loss (YPLL) among individuals with cirrhosis during the pandemic and how much of these excess YPLL were directly versus indirectly related to COVID-19. ALD, alcohol-associated liver disease; HBV, hepatitis B virus infection; HCV, hepatitis C virus infection; NAFLD, non-alcoholic fatty liver disease; YPLL, years of potential life lost. [...]returning to normal’ of healthcare access and reception should be the goal for all stakeholders.
MACA-Net: Mamba-Driven Adaptive Cross-Layer Attention Network for Multi-Behavior Recognition in Group-Housed Pigs
The accurate recognition of pig behaviors in intensive farming is crucial for health monitoring and growth assessment. To address multi-scale recognition challenges caused by perspective distortion (non-frontal camera angles), this study proposes MACA-Net, a YOLOv8n-based model capable of detecting four key behaviors: eating, lying on the belly, lying on the side, and standing. The model incorporates a Mamba Global–Local Extractor (MGLE) Module, which leverages Mamba to capture global dependencies while preserving local details through convolutional operations and channel shuffle, overcoming Mamba’s limitation in retaining fine-grained visual information. Additionally, an Adaptive Multi-Path Attention (AMPA) mechanism integrates spatial-channel attention to enhance feature focus, ensuring robust performance in complex environments and low-light conditions. To further improve detection, a Cross-Layer Feature Pyramid Transformer (CFPT) neck employs non-upsampled feature fusion, mitigating semantic gap issues where small target features are overshadowed by large target features during feature transmission. Experimental results demonstrate that MACA-Net achieves a precision of 83.1% and mAP of 85.1%, surpassing YOLOv8n by 8.9% and 4.4%, respectively. Furthermore, MACA-Net significantly reduces parameters by 48.4% and FLOPs by 39.5%. When evaluated in comparison to leading detectors such as RT-DETR, Faster R-CNN, and YOLOv11n, MACA-Net demonstrates a consistent level of both computational efficiency and accuracy. These findings provide a robust validation of the efficacy of MACA-Net for intelligent livestock management and welfare-driven breeding, offering a practical and efficient solution for modern pig farming.
Racial and Ethnic Disparities in Years of Potential Life Loss Among Patients With Cirrhosis During the COVID-19 Pandemic in the United States
Our aim was to evaluate the impact of race/ethnicity on cirrhosis-related premature death during the COVID-19 pandemic. We obtained cirrhosis-related death data (n = 872,965, January 1, 2012-December 31, 2021) from the US National Vital Statistic System to calculate age-standardized mortality rates and years of potential life lost (YPLL) for premature death aged 25-64 years. Significant racial/ethnic disparity in cirrhosis-related age-standardized mortality rates was noted prepandemic but widened during the pandemic, with the highest excess YPLL for the non-Hispanic American Indian/American Native (2020: 41.0%; 2021: 68.8%) followed by other minority groups (28.7%-45.1%), and the non-Hispanic White the lowest (2020: 20.7%; 2021: 31.6%). COVID-19 constituted >30% of the excess YPLLs for Hispanic and non-Hispanic American Indian/American Native in 2020, compared with 11.1% for non-Hispanic White. Ethnic minorities with cirrhosis experienced a disproportionate excess death and YPLLs in 2020-2021.
Global diversity and biogeography of DNA viral communities in activated sludge systems
Background Activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses that regulate microbial metabolism and nutrient cycling, significantly influencing the stability of AS systems. However, our knowledge about the diversity of viral taxonomic groups and functional traits in global AS systems is still limited. To address this gap, we investigated the global diversity and biogeography of DNA viral communities in AS systems using 85,114 viral operational taxonomic units (vOTUs) recovered from 144 AS samples collected across 54 WWTPs from 13 different countries. Results AS viral communities and their functional traits exhibited distance-decay relationship (DDR) at the global scale and latitudinal diversity gradient (LDG) from equator to mid-latitude. Furthermore, it was observed that AS viral community and functional gene structures were largely driven by the geographic factors and wastewater types, of which the geographic factors were more important. Carrying and disseminating auxiliary metabolic genes (AMGs) associated with the degradation of polysaccharides, sulfate reduction, denitrification, and organic phosphoester hydrolysis, as well as the lysis of crucial functional microbes that govern biogeochemical cycles were two major ways by which viruses could regulate AS functions. It was worth noting that our study revealed a high abundance of antibiotic resistance genes (ARGs) in viral genomes, suggesting that viruses were key reservoirs of ARGs in AS systems. Conclusions Our results demonstrated the highly diverse taxonomic groups and functional traits of viruses in AS systems. Viral lysis of host microbes and virus-mediated HGT can regulate the biogeochemical and nutrient cycles, thus affecting the performance of AS systems. These findings provide important insights into the viral diversity, function, and ecology in AS systems on a global scale. -K8pwvbs3fYC6bGWQ-q_My Video Abstract