Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
51
result(s) for
"Hiatt, Susan M."
Sort by:
Genomic diagnosis for children with intellectual disability and/or developmental delay
2017
Background
Developmental disabilities have diverse genetic causes that must be identified to facilitate precise diagnoses. We describe genomic data from 371 affected individuals, 309 of which were sequenced as proband-parent trios.
Methods
Whole-exome sequences (WES) were generated for 365 individuals (127 affected) and whole-genome sequences (WGS) were generated for 612 individuals (244 affected).
Results
Pathogenic or likely pathogenic variants were found in 100 individuals (27%), with variants of uncertain significance in an additional 42 (11.3%). We found that a family history of neurological disease, especially the presence of an affected first-degree relative, reduces the pathogenic/likely pathogenic variant identification rate, reflecting both the disease relevance and ease of interpretation of de novo variants. We also found that improvements to genetic knowledge facilitated interpretation changes in many cases. Through systematic reanalyses, we have thus far reclassified 15 variants, with 11.3% of families who initially were found to harbor a VUS and 4.7% of families with a negative result eventually found to harbor a pathogenic or likely pathogenic variant. To further such progress, the data described here are being shared through ClinVar, GeneMatcher, and dbGaP.
Conclusions
Our data strongly support the value of large-scale sequencing, especially WGS within proband-parent trios, as both an effective first-choice diagnostic tool and means to advance clinical and research progress related to pediatric neurological disease.
Journal Article
Visualization of protein interactions in living Caenorhabditis elegans using bimolecular fluorescence complementation analysis
by
Shyu, Y John
,
Duren, Holli M
,
Hiatt, Susan M
in
Analytical Chemistry
,
Animals
,
Biological Techniques
2008
The bimolecular fluorescence complementation (BiFC) assay is a powerful tool for visualizing and identifying protein interactions in living cells. This assay is based on the principle of protein-fragment complementation, using two nonfluorescent fragments derived from fluorescent proteins. When two fragments are brought together in living cells by tethering each to one of a pair of interacting proteins, fluorescence is restored. Here, we provide a protocol for a Venus-based BiFC assay to visualize protein interactions in the living nematode,
Caenorhabditis elegans
. We discuss how to design appropriate
C. elegans
BiFC cloning vectors to enable visualization of protein interactions using either inducible heat shock promoters or native promoters; transform the constructs into worms by microinjection; and analyze and interpret the resulting data. When expression of BiFC fusion proteins is induced by heat shock, the fluorescent signals can be visualized as early as 30 min after induction and last for 24 h in transgenic animals. The entire procedure takes 2–3 weeks to complete.
Journal Article
De novo mutations in MED13, a component of the Mediator complex, are associated with a novel neurodevelopmental disorder
by
Cochran, J Nicholas
,
Smith, Rosemarie
,
Haley Streff
in
Genetics
,
Mutation
,
Neurodevelopmental disorders
2018
Many genetic causes of developmental delay and/or intellectual disability (DD/ID) are extremely rare, and robust discovery of these requires both large-scale DNA sequencing and data sharing. Here we describe a GeneMatcher collaboration which led to a cohort of 13 affected individuals harboring protein-altering variants, 11 of which are de novo, in MED13; the only inherited variant was transmitted to an affected child from an affected mother. All patients had intellectual disability and/or developmental delays, including speech delays or disorders. Other features that were reported in two or more patients include autism spectrum disorder, attention deficit hyperactivity disorder, optic nerve abnormalities, Duane anomaly, hypotonia, mild congenital heart abnormalities, and dysmorphisms. Six affected individuals had mutations that are predicted to truncate the MED13 protein, six had missense mutations, and one had an in-frame-deletion of one amino acid. Out of the seven non-truncating mutations, six clustered in two specific locations of the MED13 protein: an N-terminal and C-terminal region. The four N-terminal clustering mutations affect two adjacent amino acids that are known to be involved in MED13 ubiquitination and degradation, p.Thr326 and p.Pro327. MED13 is a component of the CDK8-kinase module that can reversibly bind Mediator, a multi-protein complex that is required for Polymerase II transcription initiation. Mutations in several other genes encoding subunits of Mediator have been previously shown to associate with DD/ID, including MED13L, a paralog of MED13. Thus, our findings add MED13 to the group of CDK8-kinase module-associated disease genes.
Journal Article
Genomic sequencing identifies secondary findings in a cohort of parent study participants
by
Brothers, Kyle B.
,
Neu, Matthew B.
,
Gray, David E.
in
ACMG
,
Adult
,
Biomedical and Life Sciences
2018
Clinically relevant secondary variants were identified in parents enrolled with a child with developmental delay and intellectual disability.
Exome/genome sequencing and analysis of 789 “unaffected” parents was performed.
Pathogenic/likely pathogenic variants were identified in 21 genes within 25 individuals (3.2%), with 11 (1.4%) participants harboring variation in a gene defined as clinically actionable by the American College of Medical Genetics and Genomics. These 25 individuals self-reported either relevant clinical diagnoses (5); relevant family history or symptoms (13); or no relevant family history, symptoms, or clinical diagnoses (7). A limited carrier screen was performed yielding 15 variants in 48 (6.1%) parents. Parents were also analyzed as mate pairs (n = 365) to identify cases in which both parents were carriers for the same recessive disease, yielding three such cases (0.8%), two of which had children with the relevant recessive disease. Four participants had two findings (one carrier and one noncarrier variant). In total, 71 of the 789 enrolled parents (9.0%) received secondary findings.
We provide an overview of the rates and types of clinically relevant secondary findings, which may be useful in the design and implementation of research and clinical sequencing efforts to identify such findings.
Journal Article
De novo mutations in the GTP/GDP-binding region of RALA, a RAS-like small GTPase, cause intellectual disability and developmental delay
2018
Mutations that alter signaling of RAS/MAPK-family proteins give rise to a group of Mendelian diseases known as RASopathies. However, among RASopathies, the matrix of genotype-phenotype relationships is still incomplete, in part because there are many RAS-related proteins and in part because the phenotypic consequences may be variable and/or pleiotropic. Here, we describe a cohort of ten cases, drawn from six clinical sites and over 16,000 sequenced probands, with de novo protein-altering variation in RALA, a RAS-like small GTPase. All probands present with speech and motor delays, and most have intellectual disability, low weight, short stature, and facial dysmorphism. The observed rate of de novo RALA variants in affected probands is significantly higher (p = 4.93 x 10(-11)) than expected from the estimated random mutation rate. Further, all de novo variants described here affect residues within the GTP/GDP-binding region of RALA; in fact, six alleles arose at only two codons, Val25 and Lys128. The affected residues are highly conserved across both RAL- and RAS-family genes, are devoid of variation in large human population datasets, and several are homologous to positions at which disease-associated variants have been observed in other GTPase genes. We directly assayed GTP hydrolysis and RALA effector-protein binding of the observed variants, and found that all but one tested variant significantly reduced both activities compared to wild-type. The one exception, S157A, reduced GTP hydrolysis but significantly increased RALA-effector binding, an observation similar to that seen for oncogenic RAS variants. These results show the power of data sharing for the interpretation and analysis of rare variation, expand the spectrum of molecular causes of developmental disability to include RALA, and provide additional insight into the pathogenesis of human disease caused by mutations in small GTPases.
Journal Article
Approaches to carrier testing and results disclosure in translational genomics research: The clinical sequencing exploratory research consortium experience
2018
Background
Clinical genome and exome sequencing (CGES) is primarily used to address specific clinical concerns by detecting risk of future disease, clarifying diagnosis, or directing treatment. Additionally, CGES makes possible the disclosure of autosomal recessive and X‐linked carrier results as additional secondary findings, and research about the impact of carrier results disclosure in this context is needed.
Methods
Representatives from 11 projects in the clinical sequencing exploratory research (CSER) consortium collected data from their projects using a structured survey. The survey focused on project characteristics, which variants were offered and/or disclosed to participants as carrier results, methods for carrier results disclosure, and project‐specific outcomes. We recorded quantitative responses and report descriptive statistics with the aim of describing the variability in approaches to disclosing carrier results in translational genomics research projects.
Results
The proportion of participants with carrier results was related to the number of genes included, ranging from 3% (three genes) to 92% (4,600 genes). Between one and seven results were disclosed to those participants who received any positive result. Most projects offered participants choices about whether to receive some or all of the carrier results. There were a range of approaches to communicate results, and many projects used separate approaches for disclosing positive and negative results.
Conclusion
Future translational genomics research projects will need to make decisions regarding whether and how to disclose carrier results. The CSER consortium experience identifies approaches that balance potential participant interest while limiting impact on project resources.
The clinical sequencing exploratory research (CSER) consortium sought to understand the variability in approaches to identifying and disclosing carrier results. The broad range of experiences across 11 of the CSER projects allowed us to distill key considerations important for guiding future translational genomics research projects that will inform decisions regarding whether and how to disclose carrier results. This research may in turn help to guide policy decisions about clinical services.
Journal Article
A state-based approach to genomics for rare disease and population screening
by
Gray, David E.
,
Finnila, Candice R.
,
Nakano-Okuno, Mariko
in
Adult
,
Alabama
,
Biomedical and Life Sciences
2021
The Alabama Genomic Health Initiative (AGHI) is a state-funded effort to provide genomic testing. AGHI engages two distinct cohorts across the state of Alabama. One cohort includes children and adults with undiagnosed rare disease; a second includes an unselected adult population. Here we describe findings from the first 176 rare disease and 5369 population cohort AGHI participants.
AGHI participants enroll in one of two arms of a research protocol that provides access to genomic testing results and biobank participation. Rare disease cohort participants receive genome sequencing to identify primary and secondary findings. Population cohort participants receive genotyping to identify pathogenic and likely pathogenic variants for actionable conditions.
Within the rare disease cohort, genome sequencing identified likely pathogenic or pathogenic variation in 20% of affected individuals. Within the population cohort, 1.5% of individuals received a positive genotyping result. The rate of genotyping results corroborated by reported personal or family history varied by gene.
AGHI demonstrates the ability to provide useful health information in two contexts: rare undiagnosed disease and population screening. This utility should motivate continued exploration of ways in which emerging genomic technologies might benefit broad populations.
Journal Article
Variants in TCF20 in neurodevelopmental disability: description of 27 new patients and review of literature
2019
To define the clinical characteristics of patients with variants in TCF20, we describe 27 patients, 26 of whom were identified via exome sequencing. We compare detailed clinical data with 17 previously reported patients.
Patients were ascertained through molecular testing laboratories performing exome sequencing (and other testing) with orthogonal confirmation; collaborating referring clinicians provided detailed clinical information.
The cohort of 27 patients all had novel variants, and ranged in age from 2 to 68 years. All had developmental delay/intellectual disability. Autism spectrum disorders/autistic features were reported in 69%, attention disorders or hyperactivity in 67%, craniofacial features (no recognizable facial gestalt) in 67%, structural brain anomalies in 24%, and seizures in 12%. Additional features affecting various organ systems were described in 93%. In a majority of patients, we did not observe previously reported findings of postnatal overgrowth or craniosynostosis, in comparison with earlier reports.
We provide valuable data regarding the prognosis and clinical manifestations of patients with variants in TCF20.
Journal Article
A Genotype/Phenotype Study of KDM5B-Associated Disorders Suggests a Pathogenic Effect of Dominantly Inherited Missense Variants
2024
Bi-allelic disruptive variants (nonsense, frameshift, and splicing variants) in KDM5B have been identified as causative for autosomal recessive intellectual developmental disorder type 65. In contrast, dominant variants, usually disruptive as well, have been more difficult to implicate in a specific phenotype, since some of them have been found in unaffected controls or relatives. Here, we describe individuals with likely pathogenic variants in KDM5B, including eight individuals with dominant missense variants. This study is a retrospective case series of 21 individuals with variants in KDM5B. We performed deep phenotyping and collected the clinical information and molecular data of these individuals’ family members. We compared the phenotypes according to variant type and to those previously described in the literature. The most common features were developmental delay, impaired intellectual development, behavioral problems, autistic behaviors, sleep disorders, facial dysmorphism, and overgrowth. DD, ASD behaviors, and sleep disorders were more common in individuals with dominant disruptive KDM5B variants, while individuals with dominant missense variants presented more frequently with renal and skin anomalies. This study extends our understanding of the KDM5B-related neurodevelopmental disorder and suggests the pathogenicity of certain dominant KDM5B missense variants.
Journal Article
Parents’ Perspectives on the Utility of Genomic Sequencing in the Neonatal Intensive Care Unit
2023
Background: It is critical to understand the wide-ranging clinical and non-clinical effects of genome sequencing (GS) for parents in the NICU context. We assessed parents’ experiences with GS as a first-line diagnostic tool for infants with suspected genetic conditions in the NICU. Methods: Parents of newborns (N = 62) suspected of having a genetic condition were recruited across five hospitals in the southeast United States as part of the SouthSeq study. Semi-structured interviews (N = 78) were conducted after parents received their child’s sequencing result (positive, negative, or variants of unknown significance). Thematic analysis was performed on all interviews. Results: Key themes included that (1) GS in infancy is important for reproductive decision making, preparing for the child’s future care, ending the diagnostic odyssey, and sharing results with care providers; (2) the timing of disclosure was acceptable for most parents, although many reported the NICU environment was overwhelming; and (3) parents deny that receiving GS results during infancy exacerbated parent–infant bonding, and reported variable impact on their feelings of guilt. Conclusion: Parents reported that GS during the neonatal period was useful because it provided a “backbone” for their child’s care. Parents did not consistently endorse negative impacts like interference with parent–infant bonding.
Journal Article