Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
74
result(s) for
"Hofheinz, Frank"
Sort by:
Comparison of image quality and spatial resolution between 18F, 68Ga, and 64Cu phantom measurements using a digital Biograph Vision PET/CT
by
Oehme, Liane
,
Freudenberg, Robert
,
van den Hoff, Jörg
in
Background noise
,
Coefficient of variation
,
Computed tomography
2022
BackgroundPET nuclides can have a considerable influence on the spatial resolution and image quality of PET/CT scans, which can influence diagnostics in oncology, for example. The individual impact of the positron energy of 18F, 68Ga, and 64Cu on spatial resolution and image quality was compared for PET/CT scans acquired using a clinical, digital scanner.MethodsA Jaszczak phantom and a NEMA PET body phantom were filled with 18F-FDG, 68Ga-HCl, or 64Cu-HCl, and PET/CT scans were performed on a Siemens Biograph Vision. Acquired images were analyzed regarding spatial resolution and image quality (recovery coefficients (RC), coefficient of variation within the background, contrast recovery coefficient (CRC), contrast–noise ratio (CNR), and relative count error in the lung insert). Data were compared between scans with different nuclides.ResultsWe found that image quality was comparable between 18F-FDG and 64Cu-HCl PET/CT measurements featuring similar maximal endpoint energies of the positrons. In comparison, RC, CRC, and CNR were degraded in 68Ga-HCl data despite similar count rates. In particular, the two smallest spheres of 10 mm and 13 mm diameter revealed lower RC, CRC, and CNR values. The spatial resolution was similar between 18F-FDG and 64Cu-HCl but up to 18% and 23% worse compared with PET/CT images of the NEMA PET body phantom filled with 68Ga-HCl.ConclusionsThe positron energy of the PET nuclide influences the spatial resolution and image quality of a digital PET/CT scan. The image quality and spatial resolution of 68Ga-HCl PET/CT images were worse than those of 18F-FDG or 64Cu-HCl despite similar count rates.
Journal Article
Prognostic value of baseline 18F-fluorodeoxyglucose positron emission tomography parameters MTV, TLG and asphericity in an international multicenter cohort of nasopharyngeal carcinoma patients
by
Li, Yimin
,
Weingärtner, Julian
,
Rogasch, Julian
in
Archives & records
,
Asphericity
,
Biology and Life Sciences
2020
Purpose [18F]-fluorodeoxyglucose (FDG) positron emission tomography (PET) parameters have shown prognostic value in nasopharyngeal carcinomas (NPC), mostly in monocenter studies. The aim of this study was to assess the prognostic impact of standard and novel PET parameters in a multicenter cohort of patients. Methods The established PET parameters metabolic tumor volume (MTV), total lesion glycolysis (TLG) and maximal standardized uptake value (SUVmax) as well as the novel parameter tumor asphericity (ASP) were evaluated in a retrospective multicenter cohort of 114 NPC patients with FDG-PET staging, treated with (chemo)radiation at 8 international institutions. Uni- and multivariable Cox regression and Kaplan-Meier analysis with respect to overall survival (OS), event-free survival (EFS), distant metastases-free survival (FFDM), and locoregional control (LRC) was performed for clinical and PET parameters. Results When analyzing metric PET parameters, ASP showed a significant association with EFS (p = 0.035) and a trend for OS (p = 0.058). MTV was significantly associated with EFS (p = 0.026), OS (p = 0.008) and LRC (p = 0.012) and TLG with LRC (p = 0.019). TLG and MTV showed a very high correlation (Spearman’s rho = 0.95), therefore TLG was subesequently not further analysed. Optimal cutoff values for defining high and low risk groups were determined by maximization of the p-value in univariate Cox regression considering all possible cutoff values. Generation of stable cutoff values was feasible for MTV (p<0.001), ASP (p = 0.023) and combination of both (MTV+ASP = occurrence of one or both risk factors, p<0.001) for OS and for MTV regarding the endpoints OS (p<0.001) and LRC (p<0.001). In multivariable Cox (age >55 years + one binarized PET parameter), MTV >11.1ml (hazard ratio (HR): 3.57, p<0.001) and ASP > 14.4% (HR: 3.2, p = 0.031) remained prognostic for OS. MTV additionally remained prognostic for LRC (HR: 4.86 p<0.001) and EFS (HR: 2.51 p = 0.004). Bootstrapping analyses showed that a combination of high MTV and ASP improved prognostic value for OS compared to each single variable significantly (p = 0.005 and p = 0.04, respectively). When using the cohort from China (n = 57 patients) for establishment of prognostic parameters and all other patients for validation (n = 57 patients), MTV could be successfully validated as prognostic parameter regarding OS, EFS and LRC (all p-values <0.05 for both cohorts). Conclusions In this analysis, PET parameters were associated with outcome of NPC patients. MTV showed a robust association with OS, EFS and LRC. Our data suggest that combination of MTV and ASP may potentially further improve the risk stratification of NPC patients.
Journal Article
Asphericity derived from 18FFDG PET as a new prognostic parameter in cervical cancer patients
2023
The objective of this study was to assess the prognostic value of asphericity (ASP) and standardized uptake ratio (SUR) in cervical cancer patients. Retrospective analysis was performed on a group of 508 (aged 55 ± 12 years) previously untreated cervical cancer patients. All patients underwent a pretreatment [
18
F]FDG PET/CT study to assess the severity of the disease. The metabolic tumor volume (MTV) of the cervical cancer was delineated with an adaptive threshold method. For the resulting ROIs the maximum standardized uptake value (SUV
max
) was measured. In addition, ASP and SUR were determined as previously described. Univariate Cox regression and Kaplan–Meier analysis with respect to event free survival (EFS), overall survival (OS), freedom from distant metastasis (FFDM) and locoregional control (LRC) was performed. Additionally, a multivariate Cox regression including clinically relevant parameters was performed. In the survival analysis, MTV and ASP were shown to be prognostic factors for all investigated endpoints. Tumor metabolism quantified with the SUV
max
was not prognostic for any of the endpoints (p > 0.2). The SUR did not reach statistical significance either (p = 0.1, 0.25, 0.066, 0.053, respectively). In the multivariate analysis, the ASP remained a significant factor for EFS and LRC, while MTV was a significant factor for FFDM, indicating their independent prognostic value for the respective endpoints. The alternative parameter ASP has the potential to improve the prognostic value of [
18
F]FDG PET/CT for event-free survival and locoregional control in radically treated cervical cancer patients.
Journal Article
Pretherapeutic FDG-PET total metabolic tumor volume predicts response to induction therapy in pediatric Hodgkin’s lymphoma
by
Schatka, Imke
,
Hundsdoerfer, Patrick
,
Rogasch, Julian M. M.
in
Adolescent
,
Analysis
,
Antineoplastic Combined Chemotherapy Protocols - therapeutic use
2018
Background
Standardized treatment in pediatric patients with Hodgkin’s lymphoma (HL) follows risk stratification by tumor stage, erythrocyte sedimentation rate and tumor bulk. We aimed to identify quantitative parameters from pretherapeutic FDG-PET to assist prediction of response to induction chemotherapy.
Methods
Retrospective analysis in 50 children with HL (f:18; m:32; median age, 14.8 [4–18] a) consecutively treated according to EuroNet-PHL-C1 (
n
= 42) or -C2 treatment protocol (
n
= 8). Total metabolic tumor volume (MTV) in pretherapeutic FDG-PET was defined using a semi-automated, background-adapted threshold. Metabolic (SUVmax, SUVmean, SUVpeak, total lesion glycolysis [MTV*SUVmean]) and heterogeneity parameters (asphericity [ASP], entropy, contrast, local homogeneity, energy, and cumulative SUV-volume histograms) were derived. Early response assessment (ERA) was performed after 2 cycles of induction chemotherapy according to treatment protocol and verified by reference rating. Prediction of inadequate response (IR) in ERA was based on ROC analysis separated by stage I/II (1 and 26 patients) and stage III/IV disease (7 and 16 patients) or treatment group/level (TG/TL) 1 to 3.
Results
IR was seen in 28/50 patients (TG/TL 1, 6/12 patients; TG/TL 2, 10/17; TG/TL 3, 12/21). Among all PET parameters, MTV best predicted IR; ASP was the best heterogeneity parameter. AUC of MTV was 0.84 (95%-confidence interval, 0.69–0.99) in stage I/II and 0.86 (0.7–1.0) in stage III/IV. In patients of TG/TL 1, AUC of MTV was 0.92 (0.74–1.0); in TG/TL 2 0.71 (0.44–0.99), and in TG/TL 3 0.85 (0.69–1.0). Patients with high vs. low MTV had IR in 86 vs. 0% in TG/TL 1, 80 vs. 29% in TG/TL 2, and 90 vs. 27% in TG/TL 3 (cut-off, > 80 ml, > 160 ml, > 410 ml).
Conclusions
In this explorative study, high total MTV best predicted inadequate response to induction therapy in pediatric HL of all pretherapeutic FDG-PET parameters – in both low and high stages as well as the 3 different TG/TL.
Trial registration
Ethics committee number:
EA2/151/16
(retrospectively registered).
Journal Article
A FDG-PET radiomics signature detects esophageal squamous cell carcinoma patients who do not benefit from chemoradiation
by
Li, Yimin
,
Biebl, Matthias
,
Päßler, Tom
in
692/4028/67/1504/1477
,
692/4028/67/1857
,
692/4028/67/2321
2020
Detection of patients with esophageal squamous cell carcinoma (ESCC) who do not benefit from standard chemoradiation (CRT) is an important medical need. Radiomics using 18-fluorodeoxyglucose (FDG) positron emission tomography (PET) is a promising approach. In this retrospective study of 184 patients with locally advanced ESCC. 152 patients from one center were grouped into a training cohort (n = 100) and an internal validation cohort (n = 52). External validation was performed with 32 patients treated at a second center. Primary endpoint was disease-free survival (DFS), secondary endpoints were overall survival (OS) and local control (LC). FDG-PET radiomics features were selected by Lasso-Cox regression analyses and a separate radiomics signature was calculated for each endpoint. In the training cohort radiomics signatures containing up to four PET derived features were able to identify non-responders in regard of all endpoints (DFS p < 0.001, LC p = 0.003, OS p = 0.001). After successful internal validation of the cutoff values generated by the training cohort for DFS (p = 0.025) and OS (p = 0.002), external validation using these cutoffs was successful for DFS (p = 0.002) but not for the other investigated endpoints. These results suggest that pre-treatment FDG-PET features may be useful to detect patients who do not respond to CRT and could benefit from alternative treatment.
Journal Article
Reconstructed spatial resolution and contrast recovery with Bayesian penalized likelihood reconstruction (Q.Clear) for FDG-PET compared to time-of-flight (TOF) with point spread function (PSF)
by
Suleiman, Said
,
Bluemel, Stephanie
,
Rogasch, Julian M
in
Algorithms
,
Bayesian analysis
,
Point spread functions
2020
BackgroundBayesian penalized likelihood reconstruction for PET (e.g., GE Q.Clear) aims at improving convergence of lesion activity while ensuring sufficient signal-to-noise ratio (SNR). This study evaluated reconstructed spatial resolution, maximum/peak contrast recovery (CRmax/CRpeak) and SNR of Q.Clear compared to time-of-flight (TOF) OSEM with and without point spread function (PSF) modeling.MethodsThe NEMA IEC Body phantom was scanned five times (3 min scan duration, 30 min between scans, background, 1.5–3.9 kBq/ml F18) with a GE Discovery MI PET/CT (3-ring detector) with spheres filled with 8-, 4-, or 2-fold the background activity concentration (SBR 8:1, 4:1, 2:1). Reconstruction included Q.Clear (beta, 150/300/450), “PSF+TOF4/16” (iterations, 4; subsets, 16; in-plane filter, 2.0 mm), “OSEM+TOF4/16” (identical parameters), “PSF+TOF2/17” (2 it, 17 ss, 2.0 mm filter), “OSEM+TOF2/17” (identical), “PSF+TOF4/8” (4 it, 8 ss, 6.4 mm), and “OSEM+TOF2/8” (2 it, 8 ss, 6.4 mm). Spatial resolution was derived from 3D sphere activity profiles. RC as (sphere activity concentration [AC]/true AC). SNR as (background mean AC/background AC standard deviation).ResultsSpatial resolution of Q.Clear150 was significantly better than all conventional algorithms at SBR 8:1 and 4:1 (Wilcoxon, each p < 0.05). At SBR 4:1 and 2:1, the spatial resolution of Q.Clear300/450 was similar or inferior to PSF+TOF4/16 and OSEM+TOF4/16. Small sphere CRpeak generally underestimated true AC, and it was similar for Q.Clear150/300/450 as with PSF+TOF4/16 or PSF+TOF2/17 (i.e., relative differences < 10%). Q.Clear provided similar or higher CRpeak as OSEM+TOF4/16 and OSEM+TOF2/17 resulting in a consistently better tradeoff between CRpeak and SNR with Q.Clear. Compared to PSF+TOF4/8/OSEM+TOF2/8, Q.Clear150/300/450 showed lower SNR but higher CRpeak.ConclusionsQ.Clear consistently improved reconstructed spatial resolution at high and medium SBR compared to PSF+TOF and OSEM+TOF, but only with beta = 150. However, this is at the cost of inferior SNR with Q.Clear150 compared to Q.Clear300/450 and PSF+TOF4/16/PSF+TOF2/17 while CRpeak for the small spheres did not improve considerably. This suggests that Q.Clear300/450 may be advantageous for the 3-ring detector configuration because the tradeoff between CR and SNR with Q.Clear300/450 was superior to PSF+TOF4/16, OSEM+TOF4/16, and OSEM+TOF2/17. However, it requires validation by systematic evaluation in patients at different activity and acquisition protocols.
Journal Article
Combination of tumor asphericity and an extracellular matrix-related prognostic gene signature in non-small cell lung cancer patients
by
Strobel, Helen
,
Klinger, Bertram
,
Kreissl, Michael C.
in
631/67/1612
,
631/67/1857
,
631/67/2321
2023
One important aim of precision oncology is a personalized treatment of patients. This can be achieved by various biomarkers, especially imaging parameters and gene expression signatures are commonly used. So far, combination approaches are sparse. The aim of the study was to independently validate the prognostic value of the novel positron emission tomography (PET) parameter tumor asphericity (ASP) in non small cell lung cancer (NSCLC) patients and to investigate associations between published gene expression profiles and ASP. This was a retrospective evaluation of PET imaging and gene expression data from three public databases and two institutional datasets. The whole cohort comprised 253 NSCLC patients, all treated with curative intent surgery. Clinical parameters, standard PET parameters and ASP were evaluated in all patients. Additional gene expression data were available for 120 patients. Univariate Cox regression and Kaplan–Meier analysis was performed for the primary endpoint progression-free survival (PFS) and additional endpoints. Furthermore, multivariate cox regression testing was performed including clinically significant parameters, ASP, and the extracellular matrix-related prognostic gene signature (EPPI). In the whole cohort, a significant association with PFS was observed for ASP (p < 0.001) and EPPI (p = 0.012). Upon multivariate testing, EPPI remained significantly associated with PFS (p = 0.018) in the subgroup of patients with additional gene expression data, while ASP was significantly associated with PFS in the whole cohort (p = 0.012). In stage II patients, ASP was significantly associated with PFS (p = 0.009), and a previously published cutoff value for ASP (19.5%) was successfully validated (p = 0.008). In patients with additional gene expression data, EPPI showed a significant association with PFS, too (p = 0.033). The exploratory combination of ASP and EPPI showed that the combinatory approach has potential to further improve patient stratification compared to the use of only one parameter. We report the first successful validation of EPPI and ASP in stage II NSCLC patients. The combination of both parameters seems to be a very promising approach for improvement of risk stratification in a group of patients with urgent need for a more personalized treatment approach.
Journal Article
Quantitative PSMA-PET parameters in localized prostate cancer: prognostic and potential predictive value
2024
Background
PSMA-PET is increasingly used for staging prostate cancer (PCA) patients. However, it is not clear if quantitative imaging parameters of positron emission tomography (PET) have an impact on disease progression and are thus important for the prognosis of localized PCA.
Methods
This is a monocenter retrospective analysis of 86 consecutive patients with localized intermediate or high-risk PCA and PSMA-PET before treatment The quantitative PET parameters maximum standardized uptake value (SUV
max
), tumor asphericity (ASP), PSMA tumor volume (PSMA-TV), and PSMA total lesion uptake (PSMA-TLU = PSMA-TV × SUV
mean
) were assessed for their prognostic significance in patients with radiotherapy or surgery. Cox regression analyses were performed for biochemical recurrence-free survival, overall survival (OS), local control, and loco-regional control (LRC).
Results
67% of patients had high-risk disease, 51 patients were treated with radiotherapy, and 35 with surgery. Analysis of metric PET parameters in the whole cohort revealed a significant association of PSMA-TV (
p
= 0.003), PSMA-TLU (
p
= 0.004), and ASP (
p
< 0.001) with OS. Upon binarization of PET parameters, several other parameters showed a significant association with clinical outcome. When analyzing high-risk patients according to the primary treatment approach, a previously published cut-off for SUV
max
(8.6) showed a significant association with LRC in surgically treated (
p
= 0.048), but not in primary irradiated (
p
= 0.34) patients. In addition, PSMA-TLU (
p
= 0.016) seemed to be a very promising biomarker to stratify surgical patients.
Conclusion
Our data confirm one previous publication on the prognostic impact of SUV
max
in surgically treated patients with high-risk PCA. Our exploratory analysis indicates that PSMA-TLU might be even better suited. The missing association with primary irradiated patients needs prospective validation with a larger sample size to conclude a predictive potential.
Trial registration
Due to the retrospective nature of this research, no registration was carried out.
Journal Article
Deep learning based bilateral filtering for edge-preserving denoising of respiratory-gated PET
by
Maus, Jens
,
Petr, Jan
,
van den Hoff, Jörg
in
Applied and Technical Physics
,
Artificial neural networks
,
Automation
2024
Background
Residual image noise is substantial in positron emission tomography (PET) and one of the factors limiting lesion detection, quantification, and overall image quality. Thus, improving noise reduction remains of considerable interest. This is especially true for respiratory-gated PET investigations. The only broadly used approach for noise reduction in PET imaging has been the application of low-pass filters, usually Gaussians, which however leads to loss of spatial resolution and increased partial volume effects affecting detectability of small lesions and quantitative data evaluation. The
bilateral filter
(BF) — a locally adaptive image filter — allows to reduce image noise while preserving well defined object edges but manual optimization of the filter parameters for a given PET scan can be tedious and time-consuming, hampering its clinical use. In this work we have investigated to what extent a suitable deep learning based approach can resolve this issue by training a suitable network with the target of reproducing the results of manually adjusted case-specific bilateral filtering.
Methods
Altogether, 69 respiratory-gated clinical PET/CT scans with three different tracers (
[
18
F
]
FDG,
[
18
F
]
L-DOPA,
[
68
Ga
]
DOTATATE) were used for the present investigation. Prior to data processing, the gated data sets were split, resulting in a total of 552 single-gate image volumes. For each of these image volumes, four 3D ROIs were delineated: one ROI for image noise assessment and three ROIs for focal uptake (e.g. tumor lesions) measurements at different target/background contrast levels. An automated procedure was used to perform a brute force search of the two-dimensional BF parameter space for each data set to identify the “optimal” filter parameters to generate user-approved ground truth input data consisting of pairs of original and optimally BF filtered images. For reproducing the optimal BF filtering, we employed a modified 3D U-Net CNN incorporating
residual learning
principle. The network training and evaluation was performed using a 5-fold cross-validation scheme. The influence of filtering on lesion SUV quantification and image noise level was assessed by calculating absolute and fractional differences between the CNN, manual BF, or original (STD) data sets in the previously defined ROIs.
Results
The automated procedure used for filter parameter determination chose adequate filter parameters for the majority of the data sets with only 19 patient data sets requiring manual tuning. Evaluation of the focal uptake ROIs revealed that CNN as well as BF based filtering essentially maintain the focal
SUV
max
values of the unfiltered images with a low mean ± SD difference of
δ
SUV
max
CNN
,
STD
= (−3.9 ± 5.2)% and
δ
SUV
max
BF
,
STD
= (−4.4 ± 5.3)%. Regarding relative performance of CNN versus BF, both methods lead to very similar
SUV
max
values in the vast majority of cases with an overall average difference of
δ
SUV
max
CNN
,
BF
= (0.5 ± 4.8)%. Evaluation of the noise properties showed that CNN filtering mostly satisfactorily reproduces the noise level and characteristics of BF with
δ
Noise
CNN
,
BF
= (5.6 ± 10.5)%. No significant tracer dependent differences between CNN and BF were observed.
Conclusions
Our results show that a neural network based denoising can reproduce the results of a case by case optimized BF in a fully automated way. Apart from rare cases it led to images of practically identical quality regarding noise level, edge preservation, and signal recovery. We believe such a network might proof especially useful in the context of improved motion correction of respiratory-gated PET studies but could also help to establish BF-equivalent edge-preserving CNN filtering in clinical PET since it obviates time consuming manual BF parameter tuning.
Journal Article
The association of intra-therapeutic heterogeneity of somatostatin receptor expression with morphological treatment response in patients undergoing PRRT with 177Lu-DOTATATE
2019
Purpose of this study was to evaluate the association of the spatial heterogeneity (asphericity, ASP) in intra-therapeutic SPECT/ CT imaging of somatostatin receptor (SSR) positive metastatic gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) for morphological treatment response to peptide receptor radionuclide therapy (PRRT). Secondly, we correlated ASP derived form a pre-therapeutic OctreoScan (ASP[In]) and an intra-therapeutic [177Lu]-SPECT/CT (ASP[Lu]).
Data from first therapy cycle [177Lu-DOTA0-Tyr3]octreotate ([177Lu]-DOTATATE)-PRRT was retrospectively analyzed in 33 patients (m = 20; w = 13; median age, 72 [46-88] years). The evaluation of response to PRRT was performed according to RECIST 1.1 in responding lesions [RL (SD, PR, CR), n = 104] and non-responding lesions [NRL (PD), n = 27]. The association of SSR tumor heterogeneity with morphological response was evaluated by Kruskal-Wallis test and receiver operating characteristic curve (ROC). The optimal threshold for separation (RL vs. NRL) was calculated using the Youden-index. Relationship between pre- and intra-therapeutic ASP was determined with Spearman's rank correlation coefficient (ρ) and Bland-Altman plots.
A total of 131 lesions (liver: n = 59, lymph nodes: n = 48, bone: n = 19, pancreas: n = 5) were analyzed. Lesions with higher ASP values showed a significantly poorer response to PRRT (PD, median: 11.3, IQR: 8.5-15.5; SD, median: 3.4, IQR: 2.1-4.5; PR, median 1.7, IQR: 0.9-2.8; CR, median: 0.5, IQR: 0.0-1.3); Kruskal-Wallis, p<0.001). ROC analyses revealed a significant separation between RL and NRL for ASP after 4 months (AUC 0.85, p<0.001) and after 12 months (AUC 0.94, p<0.001). The optimal threshold for ASP was >5.45% (sensitivity 96% and specificity 82%). The correlation coefficient of pre- and intra-therapeutic ASP revealed ρ = 0.72 (p <0.01). The mean absolute difference between ASP[In] and ASP[Lu] was -0.04 (95% Limits of Agreement, -6.1-6.0).
Pre- and intra-therapeutic ASP shows a strong correlation and might be an useful tool for therapy monitoring.
Journal Article