Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
46 result(s) for "Hollis, Edmund"
Sort by:
Ryk controls remapping of motor cortex during functional recovery after spinal cord injury
Mechanisms underlying partial functional recovery after spinal cord injury are unclear. Conditionally knocking out the reinduced repulsive axon guidance receptor Ryk led to increased corticospinal axon plasticity and functional recovery. Motor cortex reorganized such that the hindlimb cortex controls the forelimb with continued forelimb reaching task training. A greater cortical area was recruited to control the forelimb in Ryk cKO. Limited functional recovery can be achieved through rehabilitation after incomplete spinal cord injury. Eliminating the function of a repulsive Wnt receptor, Ryk, in mice and rats by either conditional knockout in the motor cortex or monoclonal antibody infusion resulted in increased corticospinal axon collateral branches with presynaptic puncta in the spinal cord and enhanced recovery of forelimb reaching and grasping function following a cervical dorsal column lesion. Using optical stimulation, we observed that motor cortical output maps underwent massive changes after injury and that hindlimb cortical areas were recruited to control the forelimb over time. Furthermore, a greater cortical area was dedicated to controlling the forelimb in Ryk conditional knockout mice than in controls (wild-type or heterozygotes). In the absence of weekly task-specific training, recruitment of ectopic cortical areas was greatly reduced and there was no significant functional recovery even in Ryk conditional knockout mice. Our study provides evidence that maximal circuit reorganization and functional recovery can be achieved by combining molecular manipulation and targeted rehabilitation.
Cortical Reorganization of Sensorimotor Systems and the Role of Intracortical Circuits After Spinal Cord Injury
The plasticity of sensorimotor systems in mammals underlies the capacity for motor learning as well as the ability to relearn following injury. Spinal cord injury, which both deprives afferent input and interrupts efferent output, results in a disruption of cortical somatotopy. While changes in corticospinal axons proximal to the lesion are proposed to support the reorganization of cortical motor maps after spinal cord injury, intracortical horizontal connections are also likely to be critical substrates for rehabilitation-mediated recovery. Intrinsic connections have been shown to dictate the reorganization of cortical maps that occurs in response to skilled motor learning as well as after peripheral injury. Cortical networks incorporate changes in motor and sensory circuits at subcortical or spinal levels to induce map remodeling in the neocortex. This review focuses on the reorganization of cortical networks observed after injury and posits a role of intracortical circuits in recovery.
Induction of corticospinal regeneration by lentiviral trkB-induced Erk activation
Several experimental manipulations of the CNS environment successfully elicit regeneration of sensory and bulbospinal motor axons but fail to elicit regeneration of corticospinal axons, suggesting that cell-intrinsic mechanisms limit the regeneration of this critical class of motor neurons. We hypothesized that enhancement of intrinsic neuronal growth mechanisms would enable adult corticospinal motor axon regeneration. Lentiviral vectors were used to overexpress the BDNF receptor trkB in layer V corticospinal motor neurons. After subcortical axotomy, trkB transduction induced corticospinal axon regeneration into subcortical lesion sites expressing BDNF. In the absence of trkB overexpression, no regeneration occurred. Selective deletion of canonical, trkB-mediated neurite outgrowth signaling by mutation of the Shc/FRS-2 activation domain prohibited Erk activation and eliminated regeneration. These findings support the hypothesis that the refractory regenerative state of adult corticospinal axons can be attributed at least in part to neuron-intrinsic mechanisms, and that activation of ERK signaling can elicit corticospinal tract regeneration.
Chemotropic guidance facilitates axonal regeneration and synapse formation after spinal cord injury
The authors report a successfully targeted reinnervation of hindlimb sensory fibers projection into the CNS following spinal cord injury in rats. Cervical level 1 lesions followed by expression of the neurotrophin NT-3 in the appropriate brainstem target led to proper targeting of regenerating axons. A principal objective of spinal cord injury (SCI) research is the restoration of axonal connectivity to denervated targets. We tested the hypothesis that chemotropic mechanisms would guide regenerating spinal cord axons to appropriate brainstem targets. We subjected rats to cervical level 1 (C1) lesions and combinatorial treatments to elicit axonal bridging into and beyond lesion sites. Lentiviral vectors expressing neurotrophin-3 (NT-3) were then injected into an appropriate brainstem target, the nucleus gracilis, and an inappropriate target, the reticular formation. NT-3 expression in the correct target led to reinnervation of the nucleus gracilis in a dose-related fashion, whereas NT-3 expression in the reticular formation led to mistargeting of regenerating axons. Axons regenerating into the nucleus gracilis formed axodendritic synapses containing rounded vesicles, reflective of pre-injury synaptic architecture. Thus, we report for the first time, to the best of our knowledge, the reinnervation of brainstem targets after SCI and an essential role for chemotropic axon guidance in target selection.
Reinduced Wnt signaling limits regenerative potential of sensory axons in the spinal cord following conditioning lesion
Conditioning lesion of the peripheral branch of dorsal column axons is a well-known paradigm enabling the central branch to regenerate after injury to the spinal cord. However, only a small number of regenerating axons enter grafted substrates, and they do not grow beyond the lesion. We found that conditioning lesion induces, in addition to growth-stimulating genes, related to receptor tyrosine kinase (Ryk), a potent repulsive receptor for Wnts. Wnts are expressed around the site of spinal cord injury, and we found that grafted bone marrow stromal cells secreting the Wnt inhibitors secreted frizzled-related protein 2 or Wnt inhibitory factor 1 enhanced regeneration of the central branch after peripheral conditioning lesion. Furthermore, we found that Wnt4-expressing grafts caused dramatic long-range retraction of the injured central branch of conditioned dorsal root ganglion neurons. Macrophages accumulate along the path of receding axons but not around Wnt4-expressing cells, suggesting that the retraction of dorsal column axons is not a secondary effect of increased macrophages attracted by Wnt4. Therefore, Wnt-Ryk signaling is an inhibitory force co-induced with growth-stimulating factors after conditioning lesion. Overcoming Wnt inhibition may further enhance therapies being designed on the basis of the conditioning-lesion paradigm.
Sensory Circuit Remodeling and Movement Recovery After Spinal Cord Injury
Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of movement, yet current interventions predominantly target motor pathways. Integrated cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping, and executing movement. Corticocortical connections between primary sensory (S1) and motor (M1) cortices are critical loci of functional plasticity in response to learning and injury. Following SCI, in the motor cortex, corticocortical circuits undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes the plasticity of S1-M1 networks or how these changes may impact recovery of movement.
Neurotrophins: Potential Therapeutic Tools for the Treatment of Spinal Cord Injury
Spinal cord injury permanently disrupts neuroanatomical circuitry and can result in severe functional deficits. These functional deficits, however, are not immutable and spontaneous recovery occurs in some patients. It is highly likely that this recovery is dependent upon spared tissue and the endogenous plasticity of the central nervous system. Neurotrophic factors are mediators of neuronal plasticity throughout development and into adulthood, affecting proliferation of neuronal precursors, neuronal survival, axonal growth, dendritic arborization and synapse formation. Neurotrophic factors are therefore excellent candidates for enhancing axonal plasticity and regeneration after spinal cord injury. Understanding growth factor effects on axonal growth and utilizing them to alter the intrinsic limitations on regenerative growth will provide potent tools for the development of translational therapeutic interventions for spinal cord injury.
Task-specific modulation of corticospinal neuron activity during motor learning in mice
Motor skill learning relies on the plasticity of the primary motor cortex as task acquisition drives cortical motor network remodeling. Large-scale cortical remodeling of evoked motor outputs occurs during the learning of corticospinal-dependent prehension behavior, but not simple, non-dexterous tasks. Here we determine the response of corticospinal neurons to two distinct motor training paradigms and assess the role of corticospinal neurons in the execution of a task requiring precise modulation of forelimb movement and one that does not. In vivo calcium imaging in mice revealed temporal coding of corticospinal activity coincident with the development of precise prehension movements, but not more simplistic movement patterns. Transection of the corticospinal tract and optogenetic regulation of corticospinal activity show the necessity for patterned corticospinal network activity in the execution of precise movements but not simplistic ones. Our findings reveal a critical role for corticospinal network modulation in the learning and execution of precise motor movements. Corticospinal activity is temporally coded with precise movements in mice. Here the authors investigate the role of corticospinal neuron activity in motor cortex during the learning of either a precise or imprecise task.
Analysis of the immune response to sciatic nerve injury identifies efferocytosis as a key mechanism of nerve debridement
Sciatic nerve crush injury triggers sterile inflammation within the distal nerve and axotomized dorsal root ganglia (DRGs). Granulocytes and pro-inflammatory Ly6C high monocytes infiltrate the nerve first and rapidly give way to Ly6C negative inflammation-resolving macrophages. In axotomized DRGs, few hematogenous leukocytes are detected and resident macrophages acquire a ramified morphology. Single-cell RNA-sequencing of injured sciatic nerve identifies five macrophage subpopulations, repair Schwann cells, and mesenchymal precursor cells. Macrophages at the nerve crush site are molecularly distinct from macrophages associated with Wallerian degeneration. In the injured nerve, macrophages ‘eat’ apoptotic leukocytes, a process called efferocytosis, and thereby promote an anti-inflammatory milieu. Myeloid cells in the injured nerve, but not axotomized DRGs, strongly express receptors for the cytokine GM-CSF. In GM-CSF-deficient ( Csf2 -/- ) mice, inflammation resolution is delayed and conditioning-lesion-induced regeneration of DRG neuron central axons is abolished. Thus, carefully orchestrated inflammation resolution in the nerve is required for conditioning-lesion-induced neurorepair.
Efficient Retrograde Neuronal Transduction Utilizing Self-complementary AAV1
Adeno-associated virus (AAV) is frequently used for gene transfer into the central nervous system (CNS). Similar to adenovirus and rabies virus, AAV can be taken up by axons and retrogradely transported, resulting in neuronal gene expression distant from the injection site. We investigated the retrograde transport properties of self-complementary AAV (scAAV) serotypes 1–6 following peripheral injection. Injection of scAAV into either rat extensor carpi muscle or sciatic nerve resulted in detectable retrograde vector transport and reporter gene expression in spinal cord motor neurons (MNs). Serotype 1 resulted in the highest level of retrograde transport, with 4.1 ± 0.3% of cervical MNs projecting to the extensor carpi transduced following intramuscular injection, and 7.5 ± 3.1% of lumbar MNs transduced after sciatic nerve injection. In contrast to scAAV1, retrograde transduction with scAAV2 was undetectable following intramuscular injection, and was detected in only 0.81 ± 0.15% of MNs projecting to the sciatic nerve following intranerve injection. Furthermore, sciatic injection of single-stranded AAV1 required injection of tenfold higher numbers of viral particles for detectable transgene expression compared to scAAV1, and then only 0.91 ± 0.24% of lumbar MNs were transduced. Our data provide the basis for increased retrograde transduction efficiency using peripheral injections of scAAV1 vectors for therapeutic gene delivery to the spinal cord.