Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
937 result(s) for "Jackson, Daniel J."
Sort by:
Cadherin-related family member 3, a childhood asthma susceptibility gene product, mediates rhinovirus C binding and replication
Significance The rhinovirus C (RV-C) species was first identified in 2006 and is a major cause of acute respiratory illnesses in children and hospitalizations for exacerbations of asthma. In this study, we discovered that expression of human cadherin-related family member 3 (CDHR3), a transmembrane protein with yet unknown biological function, enables RV-C binding and replication in normally unsusceptible host cells. Intriguingly, we found that a coding SNP (rs6967330, C ₅₂₉Y) in CDHR3, previously linked to wheezing illnesses and hospitalizations for childhood asthma by genetic analysis, also mediates enhanced RV-C binding and increased progeny yields in vitro. Finally, using structural modeling, we identified potential binding sites in CDHR3 domains 1 and 2 interacting with viral capsid surface regions that are highly conserved among RV-C types. Members of rhinovirus C (RV-C) species are more likely to cause wheezing illnesses and asthma exacerbations compared with other rhinoviruses. The cellular receptor for these viruses was heretofore unknown. We report here that expression of human cadherin-related family member 3 (CDHR3) enables the cells normally unsusceptible to RV-C infection to support both virus binding and replication. A coding single nucleotide polymorphism (rs6967330, C ₅₂₉Y) was previously linked to greater cell-surface expression of CDHR3 protein, and an increased risk of wheezing illnesses and hospitalizations for childhood asthma. Compared with wild-type CDHR3, cells transfected with the CDHR3-Y ₅₂₉ variant had about 10-fold increases in RV-C binding and progeny yields. We developed a transduced HeLa cell line (HeLa-E8) stably expressing CDHR3-Y ₅₂₉ that supports RV-C propagation in vitro. Modeling of CDHR3 structure identified potential binding sites that could impact the virus surface in regions that are highly conserved among all RV-C types. Our findings identify that the asthma susceptibility gene product CDHR3 mediates RV-C entry into host cells, and suggest that rs6967330 mutation could be a risk factor for RV-C wheezing illnesses.
A technical review and guide to RNA fluorescence in situ hybridization
RNA-fluorescence in situ hybridization (FISH) is a powerful tool to visualize target messenger RNA transcripts in cultured cells, tissue sections or whole-mount preparations. As the technique has been developed over time, an ever-increasing number of divergent protocols have been published. There is now a broad selection of options available to facilitate proper tissue preparation, hybridization, and post-hybridization background removal to achieve optimal results. Here we review the technical aspects of RNA-FISH, examining the most common methods associated with different sample types including cytological preparations and whole-mounts. We discuss the application of commonly used reagents for tissue preparation, hybridization, and post-hybridization washing and provide explanations of the functional roles for each reagent. We also discuss the available probe types and necessary controls to accurately visualize gene expression. Finally, we review the most recent advances in FISH technology that facilitate both highly multiplexed experiments and signal amplification for individual targets. Taken together, this information will guide the methods development process for investigators that seek to perform FISH in organisms that lack documented or optimized protocols.
Human Rhinovirus Species and Season of Infection Determine Illness Severity
Human rhinoviruses (HRVs) consist of approximately 160 types that cause a wide range of clinical outcomes, including asymptomatic infections, common colds, and severe lower respiratory illnesses. To identify factors that influence the severity of HRV illnesses. HRV species and types were determined in 1,445 nasal lavages that were prospectively collected from 209 infants participating in a birth cohort who had at least one HRV infection. Questionnaires were used during each illness to identify moderate to severe illnesses (MSI). Altogether, 670 HRV infections were identified, and 519 of them were solitary infections (only one HRV type). These 519 viruses belonged to 93 different types of three species: 49 A, 9 B, and 35 C types. HRV-A (odds ratio, 8.2) and HRV-C (odds ratio, 7.6) were more likely to cause MSI compared with HRV-B. In addition, HRV infections were 5- to 10-fold more likely to cause MSI in the winter months (P < 0.0001) compared with summer, in contrast to peak seasonal prevalence in spring and fall. When significant differences in host susceptibility to MSI (P = 0.004) were considered, strain-specific rates of HRV MSI ranged from less than 1% to more than 20%. Factors related to HRV species and type, season, and host susceptibility determine the risk of more severe HRV illness in infancy. These findings suggest that anti-HRV strategies should focus on HRV-A and -C species and identify the need for additional studies to determine mechanisms for seasonal increases of HRV severity, independent of viral prevalence, in cold weather months.
Quantitation of eumelanin and pheomelanin markers in diverse biological samples by HPLC-UV-MS following solid-phase extraction
Eumelanin and pheomelanin are well known and common pigments found in nature. However, their complex polymer structure and high thermostability complicate their direct chemical identification. A widely used analytical method is indirect determination using HPLC with UV detection of both types of melanin by their most abundant oxidation products: pyrrole-2,3-dicarboxylic acid (PDCA), pyrrole-2,3,5-tricarboxylic acid (PTCA), thiazole-4,5-dicarboxylic acid (TDCA), and thiazole-2,4,5-tricarboxylic acid (TTCA). An increasing interest in pigmentation in biological research led us to develop a highly sensitive and selective method to identify and quantify these melanin markers in diverse biological samples with complex matrices. By introducing solid-phase extraction (SPE, reversed-phase) following alkaline oxidation we could significantly decrease background signals while maintaining recoveries greater than 70%. Our HPLC-UV-MS method allows for confident peak identification via exact mass information in corresponding UV signals used for quantitation. In addition to synthetic melanin and Sepia officinalis ink as reference compounds eumelanin markers were detected in brown human hair and a brown bivalve shell (Mytilus edulis). Brown feathers from the common chicken (Gallus g. domesticus) yielded all four eumelanin and pheomelanin markers. The present method can be easily adapted for a wide range of future studies on biological samples with unknown melanin content.
De novo assembly of transcriptomes and differential gene expression analysis using short-read data from emerging model organisms – a brief guide
Many questions in biology benefit greatly from the use of a variety of model systems. High-throughput sequencing methods have been a triumph in the democratization of diverse model systems. They allow for the economical sequencing of an entire genome or transcriptome of interest, and with technical variations can even provide insight into genome organization and the expression and regulation of genes. The analysis and biological interpretation of such large datasets can present significant challenges that depend on the ‘scientific status’ of the model system. While high-quality genome and transcriptome references are readily available for well-established model systems, the establishment of such references for an emerging model system often requires extensive resources such as finances, expertise and computation capabilities. The de novo assembly of a transcriptome represents an excellent entry point for genetic and molecular studies in emerging model systems as it can efficiently assess gene content while also serving as a reference for differential gene expression studies. However, the process of de novo transcriptome assembly is non-trivial, and as a rule must be empirically optimized for every dataset. For the researcher working with an emerging model system, and with little to no experience with assembling and quantifying short-read data from the Illumina platform, these processes can be daunting. In this guide we outline the major challenges faced when establishing a reference transcriptome de novo and we provide advice on how to approach such an endeavor. We describe the major experimental and bioinformatic steps, provide some broad recommendations and cautions for the newcomer to de novo transcriptome assembly and differential gene expression analyses. Moreover, we provide an initial selection of tools that can assist in the journey from raw short-read data to assembled transcriptome and lists of differentially expressed genes.
Evidence for a Causal Relationship between Allergic Sensitization and Rhinovirus Wheezing in Early Life
Aeroallergen sensitization and virus-induced wheezing are risk factors for asthma development during early childhood, but the temporal developmental sequence between them is incompletely understood. To define the developmental relationship between aeroallergen sensitization and virus-induced wheezing. A total of 285 children at high risk for allergic disease and asthma were followed prospectively from birth. The timing and etiology of viral respiratory wheezing illnesses were determined, and aeroallergen sensitization was assessed annually for the first 6 years of life. The relationships between these events were assessed using a longitudinal multistate Markov model. Children who were sensitized to aeroallergens had greater risk of developing viral wheeze than nonsensitized children (hazard ratio [HR], 1.9; 95% confidence interval [CI], 1.2-3.1). Allergic sensitization led to an increased risk of wheezing illnesses caused by human rhinovirus (HRV) but not respiratory syncytial virus. The absolute risk of sensitized children developing viral wheeze was greatest at 1 year of age; however, the relative risk was consistently increased at every age assessed. In contrast, viral wheeze did not lead to increased risk of subsequent allergic sensitization (HR, 0.76; 95% CI, 0.50-1.1). Prospective, repeated characterization of a birth cohort demonstrated that allergic sensitization precedes HRV wheezing and that the converse is not true. This sequential relationship and the plausible mechanisms by which allergic sensitization can lead to more severe HRV-induced lower respiratory illnesses support a causal role for allergic sensitization in this developmental pathway. Therefore, therapeutics aimed at preventing allergic sensitization may modify virus-induced wheezing and the development of asthma.
CDHR3 Asthma-Risk Genotype Affects Susceptibility of Airway Epithelium to Rhinovirus C Infections
CDHR3 (cadherin-related family member 3) is a transmembrane protein that is highly expressed in airway epithelia and the only known receptor for rhinovirus C (RV-C). A SNP (rs6967330) with G to A base change has been linked to severe exacerbations of asthma and increased susceptibility to RV-C infections in young children. The goals of this study were to determine the subcellular localization of CDHR3 and to test the hypothesis that asthma-risk genotype affects epithelial cell function and susceptibility to RV-C infections of the airway epithelia. We used immunofluorescence imaging, Western blot analysis, and transmission electron microscopy to show CDHR3 subcellular localization in apical cells, including expression in the cilia of airway epithelia. Polymorphisms in rs6967330 locus (G→A) that were previously associated with childhood asthma were related to differences in CDHR3 expression and epithelial cell function. The rs6967330 A allele was associated with higher overall protein expression and RV-C binding and replication compared with the rs6967330 G allele. Furthermore, the rs6967330 A allele was associated with earlier ciliogenesis and higher expression. Finally, genotype had no significant effects on membrane integrity or ciliary beat function. These findings provide information on the subcellular localization and possible functions of CDHR3 in the airways and link asthma-risk genotype to increased RV-C binding and replication.
Cadherin-related Family Member 3 Genetics and Rhinovirus C Respiratory Illnesses
Experimental evidence suggests that CDHR3 (cadherin-related family member 3) is a receptor for rhinovirus (RV)-C, and a missense variant in this gene (rs6967330) is associated with childhood asthma with severe exacerbations. To determine whether rs6967330 influences RV-C infections and illnesses in early childhood. We studied associations between rs6967330 and respiratory infections and illnesses in the COPSAC (Copenhagen Prospective Studies on Asthma in Childhood 2010) and COAST (Childhood Origins of Asthma Birth Cohort Study) birth cohorts, where respiratory infections were monitored prospectively for the first 3 years of life. Nasal samples were collected during acute infections in both cohorts and during asymptomatic periods in COAST and analyzed for RV-A, RV-B, and RV-C, and other common respiratory viruses. The CDHR3 asthma risk allele (rs6967330-A) was associated with increased risk of respiratory tract illnesses (incidence risk ratio [IRR] = 1.14 [95% confidence interval, 1.05-1.23]; P = 0.003). In particular, this variant was associated with risk of respiratory episodes with detection of RV-C in COPSAC (IRR = 1.89 [1.14-3.05]; P = 0.01) and in COAST (IRR = 1.37 [1.02-1.82]; P = 0.03) children, and in a combined meta-analysis (IRR = 1.51 [1.13-2.02]; P = 0.006). In contrast, the variant was not associated with illnesses related to other viruses (IRR = 1.07 [0.92-1.25]; P = 0.37). Consistent with these observations, the CDHR3 variant was associated with increased detection of RV-C, but not of other viruses during scheduled visits at specific ages. The CDHR3 asthma risk allele is associated specifically with RV-C illnesses in two birth cohorts. This clinical evidence supports earlier molecular evidence indicating that CDHR3 functions as an RV-C receptor, and raises the possibility of preventing RV-C infections by targeting CDHR3.
A dynamic biointerface in mussels mediated by a mechanoresponsive intermediate filament-based biopolymer
Mussels fabricate a distinctive biointerface that bridges their non-living biopolymeric byssus (used for anchoring in seashore habitats) with their soft-living tissue. Occurring in a region known as the byssus stem root, this biointerface is at once strong, yet also capable of on-demand release under apparent neurobiological control by the mussel, but this is not well understood. Here, we identify and sequence a previously unknown intermediate filament protein (MSP-1) that based on immunohistochemical staining and spectroscopic mapping comprises the surface of the stem root in direct contact with billions of motile cilia emerging from the living tissue. Further structural analysis indicates that MSP-1 is secreted as an α-helical coiled-coil but is mechanically converted subsequently to a β -sheet conformation. We posit that this mechanoresponsive conversion has a mechanical function in toughening the interface, but possibly also as a mechanosensory mechanism given its intimate contact with cilia in the living tissue. Mussels produce a dynamic bio-interface between their living tissue and their non-living byssus attachment, relevant for design of implant devices. Here, authors discover a mechanoresponsive protein that may mediate mechanosensing at the interface.
Wheezing Rhinovirus Illnesses in Early Life Predict Asthma Development in High-Risk Children
Virus-induced wheezing episodes in infancy often precede the development of asthma. Whether infections with specific viral pathogens confer differential future asthma risk is incompletely understood. To define the relationship between specific viral illnesses and early childhood asthma development. A total of 259 children were followed prospectively from birth to 6 years of age. The etiology and timing of specific viral wheezing respiratory illnesses during early childhood were assessed using nasal lavage, culture, and multiplex reverse transcriptase-polymerase chain reaction. The relationships of these virus-specific wheezing illnesses and other risk factors to the development of asthma were analyzed. Viral etiologies were identified in 90% of wheezing illnesses. From birth to age 3 years, wheezing with respiratory syncytial virus (RSV) (odds ratio [OR], 2.6), rhinovirus (RV) (OR, 9.8), or both RV and RSV (OR , 10) was associated with increased asthma risk at age 6 years. In Year 1, both RV wheezing (OR, 2.8) and aeroallergen sensitization (OR, 3.6) independently increased asthma risk at age 6 years. By age 3 years, wheezing with RV (OR, 25.6) was more strongly associated with asthma at age 6 years than aeroallergen sensitization (OR, 3.4). Nearly 90% (26 of 30) of children who wheezed with RV in Year 3 had asthma at 6 years of age. Among outpatient viral wheezing illnesses in infancy and early childhood, those caused by RV infections are the most significant predictors of the subsequent development of asthma at age 6 years in a high-risk birth cohort.