Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
13,323 result(s) for "Kang, Min S."
Sort by:
Computational phenotyping of brain-behavior dynamics underlying approach-avoidance conflict in major depressive disorder
Adaptive behavior requires balancing approach and avoidance based on the rewarding and aversive consequences of actions. Imbalances in this evaluation are thought to characterize mood disorders such as major depressive disorder (MDD). We present a novel application of the drift diffusion model (DDM) suited to quantify how offers of reward and aversiveness, and neural correlates thereof, are dynamically integrated to form decisions, and how such processes are altered in MDD. Hierarchical parameter estimation from the DDM demonstrated that the MDD group differed in three distinct reward-related parameters driving approach-based decision making. First, MDD was associated with reduced reward sensitivity, measured as the impact of offered reward on evidence accumulation. Notably, this effect was replicated in a follow-up study. Second, the MDD group showed lower starting point bias towards approaching offers. Third, this starting point was influenced in opposite directions by Pavlovian effects and by nucleus accumbens activity across the groups: greater accumbens activity was related to approach bias in controls but avoid bias in MDD. Cross-validation revealed that the combination of these computational biomarkers were diagnostic of patient status, with accumbens influences being particularly diagnostic. Finally, within the MDD group, reward sensitivity and nucleus accumbens parameters were differentially related to symptoms of perceived stress and depression. Collectively, these findings establish the promise of computational psychiatry approaches to dissecting approach-avoidance decision dynamics relevant for affective disorders.
Plasma neurofilament light associates with Alzheimer's disease metabolic decline in amyloid-positive individuals
Neurofilament light chain (NfL) is a promising blood biomarker to detect neurodegeneration in Alzheimer's disease (AD) and other brain disorders. However, there are limited reports of how longitudinal NfL relates to imaging biomarkers. We herein investigated the relationship between blood NfL and brain metabolism in AD. Voxelwise regression models tested the cross-sectional association between [18F]fluorodeoxyglucose ([18F]FDG) and both plasma and cerebrospinal fluid NfL in cognitively impaired and unimpaired subjects. Linear mixed models were also used to test the longitudinal association between NfL and [18F]FDG in amyloid positive (Aβ+) and negative (Aβ−) subjects. Higher concentrations of plasma and cerebrospinal fluid NfL were associated with reduced [18F]FDG uptake in correspondent brain regions. In Aβ+ participants, NfL associates with hypometabolism in AD-vulnerable regions. Longitudinal changes in the association [18F]FDG-NfL were confined to cognitively impaired Aβ+ individuals. These findings indicate that plasma NfL is a proxy for neurodegeneration in AD-related regions in Aβ+ subjects. •Plasma and CSF neurofilament light show similar pattern of association with [18F]FDG.•In Aβ+ group, brain hypometabolism associates with NfL in Alzheimer's disease signature regions.•The association [18F]fluorodeoxyglucose-plasma NfL increases over 24 months in Aβ+ patients.
Leukocyte Telomere Length Is Unrelated to Cognitive Performance Among Non-Demented and Demented Persons: An Examination of Long Life Family Study Participants
Leukocyte telomere length (LTL) is a widely hypothesized biomarker of biological aging. Persons with shorter LTL may have a greater likelihood of developing dementia. We investigate whether LTL is associated with cognitive function, differently for individuals without cognitive impairment versus individuals with dementia or incipient dementia. Enrolled subjects belong to the Long Life Family Study (LLFS), a multi-generational cohort study, where enrollment was predicated upon exceptional family longevity. Included subjects had valid cognitive and telomere data at baseline. Exclusion criteria were age ≤ 60 years, outlying LTL, and missing sociodemographic/clinical information. Analyses were performed using linear regression with generalized estimating equations, adjusting for sex, age, education, country, generation, and lymphocyte percentage. Older age and male gender were associated with shorter LTL, and LTL was significantly longer in family members than spouse controls (p < 0.005). LTL was not associated with working or episodic memory, semantic processing, and information processing speed for 1613 cognitively unimpaired individuals as well as 597 individuals with dementia or incipient dementia (p < 0.005), who scored significantly lower on all cognitive domains (p < 0.005). Within this unique LLFS cohort, a group of families assembled on the basis of exceptional survival, LTL is unrelated to cognitive ability for individuals with and without cognitive impairment. LTL does not change in the context of degenerative disease for these individuals who are biologically younger than the general population.
Bio-characteristics and Efficacy Analysis of Biodegradable Poly Dioxanone Dermal Filler in a Mouse Model and Humans
This research investigated the biophysical properties, safety, and efficacy of polydioxanone (PDO) filler compared to poly-L-lactic acid (PLLA), polycaprolactone (PCL), and hyaluronic acid (HA) fillers. In both mouse and human skin models, a novel collagen stimulation was compared with hyaluronic acid filler. An electron microscope was used to capture images of the solid particle microsphere shape. Moreover, animal models named SKH1-Hrhr were used to assess the 12-week persistence of PDO, PLLA, or PCL filler. H&E and Sirus Red staining were used to compare collagen density. Five participants in the clinical trial received three injections in the dermis over an eight-month period. Skin density, wrinkles, and gloss were evaluated using DUB skin scanner, Antera 3D CS, Mark-Vu, and Skin gloss meter after injection to assess the efficacy of fillers. PDO microspheres had uneven surfaces and were spherical and consistent in size. In comparison to other fillers, the PDO filler demonstrated complete biodegradability in just 12 weeks and better neocollagenesis, and a lower inflammatory response than the HA filler. After three injections, the human body assay showed a significant improvement in skin gloss, wrinkles, and density. In comparison to PCL and PLLA, PDO filler demonstrated a comparable volume increase rate and better biodegradability. Furthermore, although its physical characteristics are similar to those of a solid, PDO has the advantage of being more organically spread. In photoaging mice, PDO fillers are thought to offer equivalent or superior anti-wrinkle and anti-aging effects to PBS, PCL, and PLLA.
Long Term Effects of a Social Capital-Based Exercise Adherence Intervention for Breast Cancer Survivors With Moderate Fatigue: A Randomized Controlled Trial
Objectives: This study reports on the long-term effects of the Better Life After Cancer: Energy, Strength, and Support (BLESS) program, a 12-week social capital-based exercise adherence program for breast cancer survivors (BCS), implemented using a randomized controlled trial design. The study investigated outcomes related to cancer-related fatigue (CRF), quality of life (QOL), physical activity, depression, anxiety, sleep quality, and social capital. Methods: Participants who had moderate or greater CRF were randomly assigned to the intervention (n = 24), consisting of supervised and home-based exercise, or the control (n = 26), who received exercise leaflets. Generalized estimating equations models were fitted for the outcome variables. The assessment points were baseline (M1), immediately after completing the intervention at 12 weeks (M2), 1 month (M3), and 6 months post-intervention (M4). Results: A significant reduction in the total CRF score was found for both groups. We observed a significant time by group effect at M2, indicating a reduction of behavioral/severity CRF scores and a higher increase of physical activity. Also, there was an increase in the QOL score of both groups at M2, M3, and M4, compared to M1. Both groups had reduced anxiety at M3 and M4 compared to M1. The time by group effect for depression, sleep quality and social capital was not statistically significant. Conclusion: This 12-week exercise adherence program improved behavioral/severity CRF and physical activity post-intervention. Both the experimental group and control group showed significant improvements in CRF, QOL, and anxiety domains compared to the baseline, which extended to 6 months post-intervention. Trial registration: Korean Clinical Research Information Service (KCT0005763)
Human umbilical cord blood-derived mesenchymal stem cells promote regeneration of crush-injured rat sciatic nerves
Several studies have demonstrated that human umbilical cord blood-derived mesenchymal stem cells can promote neural regeneration following brain injury. However, the therapeutic effects of human umbilical cord blood-derived mesenchymal stem cells in guiding peripheral nerve regeneration remain poorly understood. This study was designed to investigate the effects of human umbilical cord blood-derived mesenchymal stem cells on neural regeneration using a rat sciatic nerve crush injury model. Human umbilical cord blood-derived mesenchymal stem cells (1 ~ 106) or a PBS control were injected into the crush-injured segment of the sciatic nerve. Four weeks after cell injection, brain-derived neurotrophic factor and tyrosine kinase receptor B mRNA expression at the lesion site was increased in comparison to control. Furthermore, sciatic function index, Fluoro Gold-labeled neuron counts and axon density were also significantly increased when compared with control. Our results indicate that human umbilical cord blood-derived mesenchvmal stem cells promote the functinnal r~.RcJv~rv nf P.n I~h-inillr~4 ~r~i~tit, n~r~e
Herbal prescription Chang'an Ⅱ repairs intestinal mucosal barrier in rats with post-inflammation irritable bowel syndrome
Aim: The herbal prescription Chang'an Ⅱ is derived from a classical TCM formula Tong-Xie-Yao-Fang for the treatment of liver-qi stagnation and spleen deficiency syndrome of irritable bowel syndrome (IBS). In this study we investigated the effects of Chang'an II on the intestinal mucosal immune barrier in a rat post-inflammation IBS (PI-IBS) model. Methods: A rat model of PI-IBS was established using a multi-stimulation paradigm including early postnatal sibling deprivation, bondage and intrarectal administration of TNBS. Four weeks after TNBS administration, the rats were treated with Chang'an Ⅱ(2.85, 5.71 and 11.42 g·kg^-1·d^-1, ig) for 14 d. Intestinal sensitivity was assessed based on the abdominal withdrawal reflex (AWR) scores and fecal water content. Open field test and two-bottle sucrose intake test were used to evaluate the behavioral changes. CD4^+ and CD8^+ cells were counted and IL-1β and IL-4 levels were measured in intestinal mucosa. Transmission electron microscopy was used to evaluate ultrastructural changes of the intestinal mucosal barrier. Results: PI-IBS model rats showed significantly increased AWR reactivity and fecal water content, and decreased locomotor activity and sucrose intake. Chang'an II treatment not only reduced AWR reactivity and fecal water content, but also suppressed the anxiety and depressive behaviors. Ultrastructural study revealed that the gut mucosal barrier function was severely damaged in PI-IBS model rats, whereas Chang'an II treatment relieved intestinal mucosal inflammation and repaired the gut mucosal barrier. Furthermore, PI-IBS model rats showed a significantly reduced CD4+^/CD8^+ cell ratio in lamina propria and submucosa, and increased IL-1β and reduced IL-4 expression in intestinal mucosa, whereas Chang'an Ⅱ treatment reversed PI-IBS-induced changes in CD4^+/CD8^+ cell ratio and expression of IL-1β and IL-4. Conclusion: Chang'an Ⅱ treatment protects the intestinal mucosa against PI-IBS through anti-inflammatory, immunomodulatory and anti-anxiety effects.
Intrusion Detection System Using Deep Neural Network for In-Vehicle Network Security
A novel intrusion detection system (IDS) using a deep neural network (DNN) is proposed to enhance the security of in-vehicular network. The parameters building the DNN structure are trained with probability-based feature vectors that are extracted from the in-vehicular network packets. For a given packet, the DNN provides the probability of each class discriminating normal and attack packets, and, thus the sensor can identify any malicious attack to the vehicle. As compared to the traditional artificial neural network applied to the IDS, the proposed technique adopts recent advances in deep learning studies such as initializing the parameters through the unsupervised pre-training of deep belief networks (DBN), therefore improving the detection accuracy. It is demonstrated with experimental results that the proposed technique can provide a real-time response to the attack with a significantly improved detection ratio in controller area network (CAN) bus.
Efficient conversion of orbital Hall current to spin current for spin-orbit torque switching
Spin Hall effect, an electric generation of spin current, allows for efficient control of magnetization. Recent theory revealed that orbital Hall effect creates orbital current, which can be much larger than spin-Hall-induced spin current. However, orbital current cannot directly exert a torque on a ferromagnet, requiring a conversion process from orbital current to spin current. Here, we report two effective methods of the conversion through spin-orbit coupling engineering, which allows us to unambiguously demonstrate orbital-current-induced spin torque, or orbital Hall torque. We find that orbital Hall torque is greatly enhanced by introducing either a rare-earth ferromagnet Gd or a Pt interfacial layer with strong spin-orbit coupling in Cr/ferromagnet structures, indicating that the orbital current generated in Cr is efficiently converted into spin current in the Gd or Pt layer. Our results offer a pathway to utilize the orbital current to further enhance the magnetization switching efficiency in spin-orbit-torque-based spintronic devices. Manipulation of the magnetization is of major importance in spintronics. The authors demonstrate that an electric field triggers a transverse flow of orbital moment: the so-called orbital Hall effect. This enables the efficient magnetization control, holding the promise for fast and miniaturized memories and sensors.
Divergent evolution of multiple virus-resistance genes from a progenitor in Capsicum spp
Plants have evolved hundreds of nucleotide-binding and leucine-rich domain proteins (NLRs) as potential intracellular immune receptors, but the evolutionary mechanism leading to the ability to recognize specific pathogen effectors is elusive. Here, we cloned Pvr4 (a Potyvirus resistance gene in Capsicum annuum) and Tsw (a Tomato spotted wilt virus resistance gene in Capsicum chinense) via a genome-based approach using independent segregating populations. The genes both encode typical NLRs and are located at the same locus on pepper chromosome 10. Despite the fact that these two genes recognize completely different viral effectors, the genomic structures and coding sequences of the two genes are strikingly similar. Phylogenetic studies revealed that these two immune receptors diverged from a progenitor gene of a common ancestor. Our results suggest that sequence variations caused by gene duplication and neofunctionalization may underlie the evolution of the ability to specifically recognize different effectors. These findings thereby provide insight into the divergent evolution of plant immune receptors.