Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
152 result(s) for "Kim, Eunha"
Sort by:
The Growth, Decline, and Transformation of the Diaconal Ministry and the Role of Women Deaconesses in the Early Churches
The objective of this article is to restore the credibility of the church within society by reestablishing its public role. Through the study of the lives and activities of women ministers in early Christianity, the research reveals that early Christianity initially granted equal authority to the ministries of diakonia (service to society) and the ministry of the Word, but gradually diminished the role of diakonia while stripping women of their status and authority. Therefore, to fully reinstate the genuine spirit of Christ, it is emphasized that the Korean church must regain the church’s public presence and recover the spirit of Jesus within the scattered congregations that currently exist.
Overview of Syntheses and Molecular-Design Strategies for Tetrazine-Based Fluorogenic Probes
Various bioorthogonal chemistries have been used for fluorescent imaging owing to the advantageous reactions they employ. Recent advances in bioorthogonal chemistry have revolutionized labeling strategies for fluorescence imaging, with inverse electron demand Diels–Alder (iEDDA) reactions in particular attracting recent attention owing to their fast kinetics and excellent specificity. One of the most interesting features of the iEDDA labeling strategy is that tetrazine-functionalized dyes are known to act as fluorogenic probes. In this review, we will focus on the synthesis, molecular-design strategies, and bioimaging applications of tetrazine-functionalized fluorogenic probes. Traditional Pinner reaction and “Pinner-like” reactions for tetrazine synthesis are discussed here, as well as metal-catalyzed C–C bond formations with convenient tetrazine intermediates and the fabrication of tetrazine-conjugated fluorophores. In addition, four different quenching mechanisms for tetrazine-modified fluorophores are presented.
Human gut bacteria produce ΤΗ17-modulating bile acid metabolites
The microbiota modulates gut immune homeostasis. Bacteria influence the development and function of host immune cells, including T helper cells expressing interleukin-17A (T H 17 cells). We previously reported that the bile acid metabolite 3-oxolithocholic acid (3-oxoLCA) inhibits T H 17 cell differentiation 1 . Although it was suggested that gut-residing bacteria produce 3-oxoLCA, the identity of such bacteria was unknown, and it was unclear whether 3-oxoLCA and other immunomodulatory bile acids are associated with inflammatory pathologies in humans. Here we identify human gut bacteria and corresponding enzymes that convert the secondary bile acid lithocholic acid into 3-oxoLCA as well as the abundant gut metabolite isolithocholic acid (isoLCA). Similar to 3-oxoLCA, isoLCA suppressed T H 17 cell differentiation by inhibiting retinoic acid receptor-related orphan nuclear receptor-γt, a key T H 17-cell-promoting transcription factor. The levels of both 3-oxoLCA and isoLCA and the 3α-hydroxysteroid dehydrogenase genes that are required for their biosynthesis were significantly reduced in patients with inflammatory bowel disease. Moreover, the levels of these bile acids were inversely correlated with the expression of T H 17-cell-associated genes. Overall, our data suggest that bacterially produced bile acids inhibit T H 17 cell function, an activity that may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease. Bacterially produced bile acids inhibit T H 17 cell function, which may be relevant to the pathophysiology of inflammatory disorders such as inflammatory bowel disease.
Maternal immune activation in mice disrupts proteostasis in the fetal brain
Maternal infection and inflammation during pregnancy are associated with neurodevelopmental disorders in offspring, but little is understood about the molecular mechanisms underlying this epidemiologic phenomenon. Here, we leveraged single-cell RNA sequencing to profile transcriptional changes in the mouse fetal brain in response to maternal immune activation (MIA) and identified perturbations in cellular pathways associated with mRNA translation, ribosome biogenesis and stress signaling. We found that MIA activates the integrated stress response (ISR) in male, but not female, MIA offspring in an interleukin-17a-dependent manner, which reduced global mRNA translation and altered nascent proteome synthesis. Moreover, blockade of ISR activation prevented the behavioral abnormalities as well as increased cortical neural activity in MIA male offspring. Our data suggest that sex-specific activation of the ISR leads to maternal inflammation-associated neurodevelopmental disorders. This paper shows that maternal immune activation in mice induces changes in the mRNA translation machinery in the fetal brain and activates the integrated stress response in male fetuses, which mediates neurobehavioral abnormalities.
Recent trends in molecular aggregates: An exploration of biomedicine
Molecular aggregates are receiving tremendous attention, demonstrating immense potential for biomedical applications in vitro and in vivo. For instance, the molecular aggregates of conventional fluorophores influence the electronic excitation states of the aggregates, causing characteristic photophysical property changes. A fundamental understanding of this classical relationship between molecular aggregate structures and photophysics has allowed for innovative biological applications. The chemical characteristics of drug molecules generally trigger the formation of colloidal aggregates, and this is considered detrimental to the drug discovery process. Furthermore, nano‐sized supramolecular aggregates have been used in biomedical imaging and therapy owing to their optimal properties for in vivo utility, including enhanced cell permeability, passive tumor targeting, and convenient surface engineering. Herein, we provide an overview of the recent trends in molecular aggregates for biomedical applications. The changes in photophysical properties of conventional fluorophores and their biological applications are discussed, followed by the effects of conventional drug molecule‐aggregates on drug discovery and therapeutics development. Recent trends in the investigation of biologically important analytes with aggregation‐induced emission are discussed for conventional and unconventional fluorophores. Lastly, we discuss nano‐sized supramolecular aggregates used in imaging and therapeutic purposes, with a focus on in vivo utilization. This review presents an overview of the recent trends in molecular aggregates for biomedical applications. To explore biomedicine field in vitro and in vivo, the molecular aggregates are getting incredible consideration as potential tool. Here, AIE properties of the conventional, unconventional fluorophores and nano‐sized supramolecular aggregates are discussed for investigation of biologically important analytes, imaging, and therapeutic purposes.
A Foundation for Provitamin A Biofortification of Maize: Genome-Wide Association and Genomic Prediction Models of Carotenoid Levels
Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.
Pre-analytical handling conditions and protein marker recovery from urine extracellular vesicles for bladder cancer diagnosis
Extracellular vesicles (EVs) contain a variety of biomolecules and provide information about the cells that produce them. EVs from cancer cells found in urine can be used as biomarkers to detect cancer, enabling early diagnosis and treatment. The potential of alpha-2-macroglobulin (A2M) and clusterin (CLU) as novel diagnostic urinary EV (uEV) biomarkers for bladder cancer (BC) was demonstrated previously. To validate the diagnostic value of these proteins in uEVs in a large BC cohort, urine handling conditions before uEV isolation should be optimized during sample transportation from medical centers. In this study, we analyzed the uEV protein quantity, EV particle number, and uEV-A2M/CLU after urine storage at 20°C and 4°C for 0–6 days, each. A2M and CLU levels in uEVs were relatively stable when stored at 4°C for a maximum of three days and at 20°C for up to 24 h, with minimal impact on analysis results. Interestingly, pre-processing to remove debris and cells by centrifugation and filtration of urine did not show any beneficial effects on the preservation of protein biomarkers of uEVs during storage. Here, the importance of optimizing shipping conditions to minimize the impact of pre-analytical handling on the uEVs protein biomarkers was emphasized. These findings provide insights for the development of clinical protocols that use uEVs for diagnostic purposes.
Nuclear receptor PPARγ-regulated monoacylglycerol O-acyltransferase 1 (MGAT1) expression is responsible for the lipid accumulation in diet-induced hepatic steatosis
Recently, hepatic peroxisome proliferator-activated receptor (PPAR)γ has been implicated in hepatic lipid accumulation. We found that the C3H mouse strain does not express PPARγ in the liver and, when subject to a high-fat diet, is resistant to hepatic steatosis, compared with C57BL/6 (B6) mice. Adenoviral PPARγ2 injection into B6 and C3H mice caused hepatic steatosis, and microarray analysis demonstrated that hepatic PPARγ2 expression is associated with genes involved in fatty acid transport and the triglyceride synthesis pathway. In particular, hepatic PPARγ2 expression significantly increased the expression of monoacylglycerol O -acyltransferase 1 (MGAT1). Promoter analysis by luciferase assay and electrophoretic mobility shift assay as well as chromatin immunoprecipitation assay revealed that PPARγ2 directly regulates the MGAT1 promoter activity. The MGAT1 overexpression in cultured hepatocytes enhanced triglyceride synthesis without an increase of PPARγ expression. Importantly, knockdown of MGAT1 in the liver significantly reduced hepatic steatosis in 12-wk-old high-fat–fed mice as well as ob/ob mice, accompanied by weight loss and improved glucose tolerance. These results suggest that the MGAT1 pathway induced by hepatic PPARγ is critically important in the development of hepatic steatosis during diet-induced obesity.
Seizure evolution in a mouse model of West syndrome involves complex and time-dependent synapse remodeling, gliosis and alterations in lipid metabolism
Neurodevelopmental disorders can have long-lasting effects, causing not only early pediatric symptoms but also a range of neurological issues throughout adulthood. West syndrome is a severe neurodevelopmental disorder marked by infantile spasms, an early symptom that typically subsides with age. However, many patients progress to other seizure forms, known as seizure evolution, which is closely linked to poor long-term outcomes. Despite its clinical significance, the neurobiological mechanisms behind seizure evolution in West syndrome remain poorly understood. Recent genetic studies have consistently identified the CYFIP2 p.Arg87Cys variant in West syndrome patients, and the Cyfip2 + /R87C mouse model carrying this mutation has been shown to recapitulate key symptoms of the disorder, including infantile spasms. In this study, we aimed to gain deeper insight into seizure evolution by conducting longitudinal deep phenotyping of the Cyfip2 + /R87C mouse model from the neonatal stage to seven months of age. We tracked seizure activity through behavioral and EEG recordings and employed multi-omic analyses, including tissue and single-cell level transcriptomics, ultrastructural analysis, proteomics, and lipidomics, to capture a comprehensive view of molecular and cellular changes. Our results showed that after an initial period of neonatal spasms, Cyfip2 + /R87C mice entered a seizure-free phase, followed by spontaneous recurrent seizures in adulthood, ultimately leading to premature death. This progression was associated with synaptic remodeling, sequential activation of different glial cell types, lipid droplet accumulation in astrocytes, and significant proteomic and lipidomic changes in the brain. These findings suggest that seizure evolution in West syndrome involves complex, time-dependent interactions between neurons and glial cells, along with alterations in lipid metabolism. Our study highlights the potential of longitudinal multi-omic approaches to uncover underlying mechanisms of seizure evolution and suggests that targeting these changes could offer novel therapeutic strategies. Additionally, the dataset generated here may provide valuable insights for other epilepsy and neurodevelopmental disorder models.