Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
43
result(s) for
"Kirkby, Jasper"
Sort by:
Earth’s atmosphere protects the biosphere from nearby supernovae
by
Lelieveld, Jos
,
Stolzenburg, Dominik
,
Sommer, Eva
in
Aerosols
,
Anthropogenic factors
,
Atmosphere
2024
Geological evidence indicates that a supernova within 100 parsecs of Earth occurs around once per million years. Such nearby supernovas can produce an intense gamma-ray burst and a 100-fold increase of cosmic rays, lasting several centuries. We find that the effect of a short burst of gamma rays is small since they are strongly attenuated before reaching the lower stratosphere. Intense cosmic radiation affects stratospheric ozone but, due to compensating effects in catalytic chemical cycles, ozone depletion is moderate and comparable to that from current anthropogenic emissions. This also holds for the low-oxygen atmosphere during early evolution of terrestrial life. We estimate the increase in aerosol and clouds from a 100-fold increase of cosmic rays exerts a radiative forcing comparable in magnitude but opposite in sign to current anthropogenic climate forcing. We conclude that Earth’s atmosphere is effective at shielding the biosphere from nearby supernovae.
Journal Article
Cosmic Rays and Climate
2007
Among the most puzzling questions in climate change is that of solar-climate variability, which has attracted the attention of scientists for more than two centuries. Until recently, even the existence of solar-climate variability has been controversial--perhaps because the observations had largely involved correlations between climate and the sunspot cycle that had persisted for only a few decades. Over the last few years, however, diverse reconstructions of past climate change have revealed clear associations with cosmic ray variations recorded in cosmogenic isotope archives, providing persuasive evidence for solar or cosmic ray forcing of the climate. However, despite the increasing evidence of its importance, solar-climate variability is likely to remain controversial until a physical mechanism is established. Although this remains a mystery, observations suggest that cloud cover may be influenced by cosmic rays, which are modulated by the solar wind and, on longer time scales, by the geomagnetic field and by the galactic environment of Earth. Two different classes of microphysical mechanisms have been proposed to connect cosmic rays with clouds: firstly, an influence of cosmic rays on the production of cloud condensation nuclei and, secondly, an influence of cosmic rays on the global electrical circuit in the atmosphere and, in turn, on ice nucleation and other cloud microphysical processes. Considerable progress on understanding ion-aerosol-cloud processes has been made in recent years, and the results are suggestive of a physically-plausible link between cosmic rays, clouds and climate. However, a concerted effort is now required to carry out definitive laboratory measurements of the fundamental physical and chemical processes involved, and to evaluate their climatic significance with dedicated field observations and modelling studies.[PUBLICATION ABSTRACT]
Journal Article
The impact of ammonia on particle formation in the Asian Tropopause Aerosol Layer
by
Ehrhart, Sebastian
,
Curtius, Joachim
,
Schobesberger, Siegfried
in
704/106/35/824
,
704/172/169/824
,
Aerosols
2024
During summer, ammonia emissions in Southeast Asia influence air pollution and cloud formation. Convective transport by the South Asian monsoon carries these pollutant air masses into the upper troposphere and lower stratosphere (UTLS), where they accumulate under anticyclonic flow conditions. This air mass accumulation is thought to contribute to particle formation and the development of the Asian Tropopause Aerosol Layer (ATAL). Despite the known influence of ammonia and particulate ammonium on air pollution, a comprehensive understanding of the ATAL is lacking. In this modelling study, the influence of ammonia on particle formation is assessed with emphasis on the ATAL. We use the EMAC chemistry-climate model, incorporating new particle formation parameterisations derived from experiments at the CERN CLOUD chamber. Our diurnal cycle analysis confirms that new particle formation mainly occurs during daylight, with a 10-fold enhancement in rate. This increase is prominent in the South Asian monsoon UTLS, where deep convection introduces high ammonia levels from the boundary layer, compared to a baseline scenario without ammonia. Our model simulations reveal that this ammonia-driven particle formation and growth contributes to an increase of up to 80% in cloud condensation nuclei (CCN) concentrations at cloud-forming heights in the South Asian monsoon region. We find that ammonia profoundly influences the aerosol mass and composition in the ATAL through particle growth, as indicated by an order of magnitude increase in nitrate levels linked to ammonia emissions. However, the effect of ammonia-driven new particle formation on aerosol mass in the ATAL is relatively small. Ammonia emissions enhance the regional aerosol optical depth (AOD) for shortwave solar radiation by up to 70%. We conclude that ammonia has a pronounced effect on the ATAL development, composition, the regional AOD, and CCN concentrations.
Journal Article
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
2020
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog
1
,
2
, but how it occurs in cities is often puzzling
3
. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms
4
,
5
.
Measurements in the CLOUD chamber at CERN show that the rapid condensation of ammonia and nitric acid vapours could be important for the formation and survival of new particles in wintertime urban conditions, contributing to urban smog.
Journal Article
The role of low-volatility organic compounds in initial particle growth in the atmosphere
by
Ehrhart, Sebastian
,
Schobesberger, Siegfried
,
Curtius, Joachim
in
639/766/530/951
,
704/106/35/824
,
704/172/169/824
2016
The growth of nucleated organic particles has been investigated in controlled laboratory experiments under atmospheric conditions; initial growth is driven by organic vapours of extremely low volatility, and accelerated by more abundant vapours of slightly higher volatility, leading to markedly different modelled concentrations of atmospheric cloud condensation nuclei when this growth mechanism is taken into account.
Aerosol particle formation in clean air
The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s
Nature
point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby
et al
. show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl
et al
. examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility.
About half of present-day cloud condensation nuclei originate from atmospheric nucleation, frequently appearing as a burst of new particles near midday
1
. Atmospheric observations show that the growth rate of new particles often accelerates when the diameter of the particles is between one and ten nanometres
2
,
3
. In this critical size range, new particles are most likely to be lost by coagulation with pre-existing particles
4
, thereby failing to form new cloud condensation nuclei that are typically 50 to 100 nanometres across. Sulfuric acid vapour is often involved in nucleation but is too scarce to explain most subsequent growth
5
,
6
, leaving organic vapours as the most plausible alternative, at least in the planetary boundary layer
7
,
8
,
9
,
10
. Although recent studies
11
,
12
,
13
predict that low-volatility organic vapours contribute during initial growth, direct evidence has been lacking. The accelerating growth may result from increased photolytic production of condensable organic species in the afternoon
2
, and the presence of a possible Kelvin (curvature) effect, which inhibits organic vapour condensation on the smallest particles (the nano-Köhler theory)
2
,
14
, has so far remained ambiguous. Here we present experiments performed in a large chamber under atmospheric conditions that investigate the role of organic vapours in the initial growth of nucleated organic particles in the absence of inorganic acids and bases such as sulfuric acid or ammonia and amines, respectively. Using data from the same set of experiments, it has been shown
15
that organic vapours alone can drive nucleation. We focus on the growth of nucleated particles and find that the organic vapours that drive initial growth have extremely low volatilities (saturation concentration less than 10
−4.5
micrograms per cubic metre). As the particles increase in size and the Kelvin barrier falls, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility (saturation concentrations of 10
−4.5
to 10
−0.5
micrograms per cubic metre). We present a particle growth model that quantitatively reproduces our measurements. Furthermore, we implement a parameterization of the first steps of growth in a global aerosol model and find that concentrations of atmospheric cloud concentration nuclei can change substantially in response, that is, by up to 50 per cent in comparison with previously assumed growth rate parameterizations.
Journal Article
Ion-induced nucleation of pure biogenic particles
by
Ehrhart, Sebastian
,
Schobesberger, Siegfried
,
Curtius, Joachim
in
704/106/35/824
,
704/106/694/2739
,
Aerosols
2016
Aerosol particles can form in the atmosphere by nucleation of highly oxidized biogenic vapours in the absence of sulfuric acid, with ions from Galactic cosmic rays increasing the nucleation rate by one to two orders of magnitude compared with neutral nucleation.
Aerosol particles can form in the atmosphere by nucleation of highly oxidized biogenic vapours in the absence of sulfuric acid, with ions from Galactic cosmic rays increasing the nucleation rate by one to two orders of magnitude compared with neutral nucleation.
Aerosol particle formation in clean air
The effect of atmospheric aerosols on clouds and the radiative forcing of the climate system remains poorly understood. It is thought that nucleation of aerosol particles from atmospheric vapours rarely proceeds in the absence of sulfuric acid. Now two papers in this week’s
Nature
point to a previously unappreciated role for highly oxygenated molecules (HOMs) in promoting new particle formation and growth, essentially a mechanism that produces aerosols in the absence of pollution. Jasper Kirkby
et al
. show that aerosol particles can form as a result of ion-induced nucleation of HOMs in the absence of sulfuric acid under conditions relevant to the atmosphere in the CLOUD chamber at CERN. Jasmin Tröstl
et al
. examined the role of organic vapours in the initial growth of nucleated organic particles in the absence of sulfuric acid in the CERN CLOUD chamber under atmospheric conditions. They find that the organic vapours driving initial growth have extremely low volatilities. With increasing particle size, subsequent growth is primarily due to more abundant organic vapours of slightly higher volatility.
Atmospheric aerosols and their effect on clouds are thought to be important for anthropogenic radiative forcing of the climate, yet remain poorly understood
1
. Globally, around half of cloud condensation nuclei originate from nucleation of atmospheric vapours
2
. It is thought that sulfuric acid is essential to initiate most particle formation in the atmosphere
3
,
4
, and that ions have a relatively minor role
5
. Some laboratory studies, however, have reported organic particle formation without the intentional addition of sulfuric acid, although contamination could not be excluded
6
,
7
. Here we present evidence for the formation of aerosol particles from highly oxidized biogenic vapours in the absence of sulfuric acid in a large chamber under atmospheric conditions. The highly oxygenated molecules (HOMs) are produced by ozonolysis of α-pinene. We find that ions from Galactic cosmic rays increase the nucleation rate by one to two orders of magnitude compared with neutral nucleation. Our experimental findings are supported by quantum chemical calculations of the cluster binding energies of representative HOMs. Ion-induced nucleation of pure organic particles constitutes a potentially widespread source of aerosol particles in terrestrial environments with low sulfuric acid pollution.
Journal Article
Molecular understanding of sulphuric acid–amine particle nucleation in the atmosphere
by
Schobesberger, Siegfried
,
Ehrhart, Sebastian
,
Curtius, Joachim
in
704/106/35/824
,
Acids
,
Aerosols
2013
Amines at typical atmospheric concentrations of a only few molecules per trillion air molecules combine with sulphuric acid to form highly stable aerosol particles at rates similar to those observed in the lower atmosphere.
Atmospheric chemistry of anthropogenic amines
Amines emitted into the atmosphere from anthropogenic sources are thought to enhance nucleation from trace atmospheric vapours, stimulate particle formation and influence the development and properties of clouds. Direct evidence for this under atmospheric conditions has been lacking; however, this study, using the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN, demonstrates that amines at atmospherically relevant concentrations can sufficiently increase nucleation rates to be able to account for the particle formation rates observed in the atmospheric environment.
Nucleation of aerosol particles from trace atmospheric vapours is thought to provide up to half of global cloud condensation nuclei
1
. Aerosols can cause a net cooling of climate by scattering sunlight and by leading to smaller but more numerous cloud droplets, which makes clouds brighter and extends their lifetimes
2
. Atmospheric aerosols derived from human activities are thought to have compensated for a large fraction of the warming caused by greenhouse gases
2
. However, despite its importance for climate, atmospheric nucleation is poorly understood. Recently, it has been shown that sulphuric acid and ammonia cannot explain particle formation rates observed in the lower atmosphere
3
. It is thought that amines may enhance nucleation
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
,
13
,
14
,
15
,
16
, but until now there has been no direct evidence for amine ternary nucleation under atmospheric conditions. Here we use the CLOUD (Cosmics Leaving OUtdoor Droplets) chamber at CERN and find that dimethylamine above three parts per trillion by volume can enhance particle formation rates more than 1,000-fold compared with ammonia, sufficient to account for the particle formation rates observed in the atmosphere. Molecular analysis of the clusters reveals that the faster nucleation is explained by a base-stabilization mechanism involving acid–amine pairs, which strongly decrease evaporation. The ion-induced contribution is generally small, reflecting the high stability of sulphuric acid–dimethylamine clusters and indicating that galactic cosmic rays exert only a small influence on their formation, except at low overall formation rates. Our experimental measurements are well reproduced by a dynamical model based on quantum chemical calculations of binding energies of molecular clusters, without any fitted parameters. These results show that, in regions of the atmosphere near amine sources, both amines and sulphur dioxide should be considered when assessing the impact of anthropogenic activities on particle formation.
Journal Article
Neutral molecular cluster formation of sulfuric acid–dimethylamine observed in real time under atmospheric conditions
by
Ehrhart, Sebastian
,
Schobesberger, Siegfried
,
Curtius, Joachim
in
Aerosols
,
Amines
,
Atmospheric aerosols
2014
For atmospheric sulfuric acid (SA) concentrations the presence of dimethylamine (DMA) at mixing ratios of several parts per trillion by volume can explain observed boundary layer new particle formation rates. However, the concentration and molecular composition of the neutral (uncharged) clusters have not been reported so far due to the lack of suitable instrumentation. Here we report on experiments from the Cosmics Leaving Outdoor Droplets chamber at the European Organization for Nuclear Research revealing the formation of neutral particles containing up to 14 SA and 16 DMA molecules, corresponding to a mobility diameter of about 2 nm, under atmospherically relevant conditions. These measurements bridge the gap between the molecular and particle perspectives of nucleation, revealing the fundamental processes involved in particle formation and growth. The neutral clusters are found to form at or close to the kinetic limit where particle formation is limited only by the collision rate of SA molecules. Even though the neutral particles are stable against evaporation from the SA dimer onward, the formation rates of particles at 1.7-nm size, which contain about 10 SA molecules, are up to 4 orders of magnitude smaller compared with those of the dimer due to coagulation and wall loss of particles before they reach 1.7 nm in diameter. This demonstrates that neither the atmospheric particle formation rate nor its dependence on SA can simply be interpreted in terms of cluster evaporation or the molecular composition of a critical nucleus.
Significance A significant fraction of atmospheric aerosols is formed from the condensation of low-volatility vapors. These newly formed particles can grow, become seeds for cloud particles, and influence climate. New particle formation in the planetary boundary layer generally proceeds via the neutral channel. However, unambiguous identification of neutral nucleating clusters has so far not been possible under atmospherically relevant conditions. We explored the system of sulfuric acid, water, and dimethylamine in a well-controlled laboratory experiment and measured the time-resolved concentrations of neutral clusters. Clusters containing up to 14 sulfuric acid and 16 dimethylamine molecules were observed. Our results demonstrate that a cluster containing as few as two sulfuric acid and one or two dimethylamine molecules is already stable against evaporation.
Journal Article
Rapid growth of organic aerosol nanoparticles over a wide tropospheric temperature range
by
Quéléver, Lauriane L. J.
,
Curtius, Joachim
,
Lampilahti, Janne
in
Aerosols
,
Atmosphere
,
Atmospheric conditions
2018
Nucleation and growth of aerosol particles from atmospheric vapors constitutes a major source of global cloud condensation nuclei (CCN). The fraction of newly formed particles that reaches CCN sizes is highly sensitive to particle growth rates, especially for particle sizes <10 nm, where coagulation losses to larger aerosol particles are greatest. Recent results show that some oxidation products from biogenic volatile organic compounds are major contributors to particle formation and initial growth. However, whether oxidized organics contribute to particle growth over the broad span of tropospheric temperatures remains an open question, and quantitative mass balance for organic growth has yet to be demonstrated at any temperature. Here, in experiments performed under atmospheric conditions in the Cosmics Leaving Outdoor Droplets (CLOUD) chamber at the European Organization for Nuclear Research (CERN), we show that rapid growth of organic particles occurs over the range from −25 °C to 25 °C. The lower extent of autoxidation at reduced temperatures is compensated by the decreased volatility of all oxidized molecules. This is confirmed by particle-phase composition measurements, showing enhanced uptake of relatively less oxygenated products at cold temperatures. We can reproduce the measured growth rates using an aerosol growth model based entirely on the experimentally measured gas-phase spectra of oxidized organic molecules obtained from two complementary mass spectrometers. We show that the growth rates are sensitive to particle curvature, explaining widespread atmospheric observations that particle growth rates increase in the single-digit-nanometer size range. Our results demonstrate that organic vapors can contribute to particle growth over a wide range of tropospheric temperatures from molecular cluster sizes onward.
Journal Article
Oxidation Products of Biogenic Emissions Contribute to Nucleation of Atmospheric Particles
by
Schobesberger, Siegfried
,
Ehrhart, Sebastian
,
Curtius, Joachim
in
Aerosols
,
Aerosols - chemistry
,
Amines
2014
Atmospheric new-particle formation affects climate and is one of the least understood atmospheric aerosol processes. The complexity and variability of the atmosphere has hindered elucidation of the fundamental mechanism of new-particle formation from gaseous precursors. We show, in experiments performed with the CLOUD (Cosmics Leaving Outdoor Droplets) chamber at CERN, that sulfuric acid and oxidized organic vapors at atmospheric concentrations reproduce particle nucleation rates observed in the lower atmosphere. The experiments reveal a nucleation mechanism involving the formation of clusters containing sulfuric acid and oxidized organic molecules from the very first step. Inclusion of this mechanism in a global aerosol model yields a photochemically and biologically driven seasonal cycle of particle concentrations in the continental boundary layer, in good agreement with observations.
Journal Article