Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
29
result(s) for
"Korhonen, Kimmo"
Sort by:
GEOMAGIA50.v3: 1. general structure and modifications to the archeological and volcanic database
by
Brown, Maxwell C
,
Nilsson, Andreas
,
Constable, Catherine G
in
Archaeology
,
Constraint modelling
,
Earth and Environmental Science
2015
Background
GEOMAGIA50.v3 is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data from a variety of materials that record Earth’s magnetic field over the past 50 ka.
Findings
Since its original release in 2006, the structure and function of the database have been updated and a significant number of data have been added. Notable modifications are the following: (1) the inclusion of additional intensity, directional and metadata from archeological and volcanic materials and an improved documentation of radiocarbon dates; (2) a new data model to accommodate paleomagnetic, rock magnetic, and chronological data from lake and marine sediments; (3) a refinement of the geographic constraints in the archeomagnetic/volcanic query allowing selection of particular locations; (4) more flexible methodological and statistical constraints in the archeomagnetic/volcanic query; (5) the calculation of predictions of the Holocene geomagnetic field from a series of time varying global field models; (6) searchable reference lists; and (7) an updated web interface. This paper describes general modifications to the database and specific aspects of the archeomagnetic and volcanic database. The reader is referred to a companion publication for a description of the sediment database.
Conclusions
The archeomagnetic and volcanic part of GEOMAGIA50.v3 currently contains 14,645 data (declination, inclination, and paleointensity) from 461 studies published between 1959 and 2014. We review the paleomagnetic methods used to obtain these data and discuss applications of the data within the database. The database continues to expand as legacy data are added and new studies published. The web-based interface can be found at
http://geomagia.gfz-potsdam.de
.
Journal Article
The seasonal cycle of ice-nucleating particles linked to the abundance of biogenic aerosol in boreal forests
2021
Ice-nucleating particles (INPs) trigger the formation of cloud ice crystals in the atmosphere. Therefore, they strongly influence cloud microphysical and optical properties and precipitation and the life cycle of clouds. Improving weather forecasting and climate projection requires an appropriate formulation of atmospheric INP concentrations. This remains challenging as the global INP distribution and variability depend
on a variety of aerosol types and sources, and neither their short-term
variability nor their long-term seasonal cycles are well covered by
continuous measurements. Here, we provide the first year-long set of
observations with a pronounced INP seasonal cycle in a boreal forest
environment. Besides the observed seasonal cycle in INP concentrations with
a minimum in wintertime and maxima in early and late summer, we also provide indications for a seasonal variation in the prevalent INP type. We show that the seasonal dependency of INP concentrations and prevalent INP types is most likely driven by the abundance of biogenic aerosol. As current parameterizations do not reproduce this variability, we suggest a new mechanistic description for boreal forest environments which considers the seasonal variation in INP concentrations. For this, we use the ambient air temperature measured close to the ground at 4.2 m height as a proxy for the season, which appears to affect the source strength of biogenic emissions and, thus, the INP abundance over the boreal forest. Furthermore, we provide new INP parameterizations based on the Ice Nucleation Active Surface Site (INAS) approach, which specifically describes the ice nucleation activity of boreal aerosols particles prevalent in different seasons. Our results characterize the boreal forest as an important but variable INP source and provide new perspectives to describe these new findings in atmospheric models.
Journal Article
Properties and emission factors of cloud condensation nuclei from biomass cookstoves – observations of a strong dependency on potassium content in the fuel
2021
Residential biomass combustion is a significant source of aerosol particles on regional and global scales influencing climate and human health. The main objective of the current study was to investigate the properties of cloud condensation nuclei (CCN) emitted from biomass burning of solid fuels in different cookstoves mostly of relevance to sub-Saharan east Africa. The traditional three-stone fire and a rocket stove were used for combustion of wood logs of Sesbania and Casuarina with birch used as a reference. A natural draft and a forced-draft pellet stove were used for combustion of pelletised Sesbania and pelletised Swedish softwood alone or in mixtures with pelletised coffee husk, rice husk or water hyacinth. The CCN activity and the effective density were measured for particles with mobility diameters of ∽65, ∽100 and ∽200 nm, respectively, and occasionally for 350 nm particles. Particle number size distributions were measured online with a fast particle analyser. The chemical composition of the fuel ash was measured by application of standard protocols. The average particle number size distributions were by number typically dominated by an ultrafine mode, and in most cases a soot mode was centred around a mobility diameter of ∽150 nm. The CCN activities decreased with increasing particle size for all experiments and ranged in terms of the hygroscopicity parameter, κ, from ∽0.1 to ∽0.8 for the ultrafine mode and from ∽0.001 to ∽0.15 for the soot mode. The CCN activity (κ) of the ultrafine mode increased (i) with increasing combustion temperature for a given fuel, and (ii) it typically increased with increasing potassium concentration in the investigated fuels. The primary CCN and the estimated particulate matter (PM) emission factors were typically found to increase significantly with increasing potassium concentration in the fuel for a given stove. In order to link CCN emission factors to PM emission factors, knowledge about stove technology, stove operation and the inorganic fuel ash composition is needed. This complicates the use of ambient PM levels alone for estimation of CCN concentrations in regions dominated by biomass combustion aerosol, with the relation turning even more complex when accounting for atmospheric ageing of the aerosol.
Journal Article
The deeper the better? A thermogeological analysis of medium-deep borehole heat exchangers in low-enthalpy crystalline rocks
by
Piipponen, Kaiu
,
Leppäharju, Nina
,
Korhonen, Kimmo
in
Boreholes
,
Clean technology
,
Crystal structure
2022
The energy sector is undergoing a fundamental transformation, with a significant investment in low-carbon technologies to replace fossil-based systems. In densely populated urban areas, deep boreholes offer an alternative over shallow geothermal systems, which demand extensive surface areas to attain large-scale heat production. This paper presents numerical calculations of the thermal energy that can be extracted from the medium-deep borehole heat exchangers in the low-enthalpy geothermal setting at depths ranging from 600 to 3000 m. We applied the thermogeological parameters of three locations across Finland and tested two types of coaxial borehole heat exchangers to understand better the variables that affect heat production in low-permeability crystalline rocks. For each depth, location, and heat collector type, we used a range of fluid flow rates to examine the correlation between thermal energy production and resulting outlet temperature. Our results indicate a trade-off between thermal energy production and outlet fluid temperature depending on the fluid flow rate, and that the vacuum-insulated tubing outperforms a high-density polyethylene pipe in energy and temperature production. In addition, the results suggest that the local thermogeological factors impact heat production. Maximum energy production from a 600-m-deep well achieved 170 MWh/a, increasing to 330 MWh/a from a 1000-m-deep well, 980 MWh/a from a 2-km-deep well, and up to 1880 MWh/a from a 3-km-deep well. We demonstrate that understanding the interplay of the local geology, heat exchanger materials, and fluid circulation rates is necessary to maximize the potential of medium-deep geothermal boreholes as a reliable long-term baseload energy source.
Journal Article
GEOMAGIA50.v3: 2. A new paleomagnetic database for lake and marine sediments
by
Frank, Ute
,
Brown, Maxwell C
,
Panovska, Sanja
in
Construction materials
,
Earth
,
Earth and Environmental Science
2015
Background
GEOMAGIA50.v3 for sediments is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data obtained from lake and marine sediments deposited over the past 50 ka. Its objective is to catalogue data that will improve our understanding of changes in the geomagnetic field, physical environments, and climate.
Findings
GEOMAGIA50.v3 for sediments builds upon the structure of the pre-existing GEOMAGIA50 database for magnetic data from archeological and volcanic materials. A strong emphasis has been placed on the storage of geochronological data, and it is the first magnetic archive that includes comprehensive radiocarbon age data from sediments. The database will be updated as new sediment data become available.
Conclusions
The web-based interface for the sediment database is located at
http://geomagia.gfz-potsdam.de/geomagiav3/SDquery.php
. This paper is a companion to Brown et al. (Earth Planets Space doi:10.1186/s40623-015-0232-0, 2015) and describes the data types, structure, and functionality of the sediment database.
Journal Article
Immersion Freezing Ability of Freshly Emitted Soot with Various Physico-Chemical Characteristics
2021
The immersion freezing ability of soot particles has in previous studies been reported in the range of low/insignificant to very high. The aims of this study were to: (i) perform detailed physico-chemical characterisation of freshly produced soot particles with very different properties, (ii) investigate the immersion freezing ability of the same particles, and (iii) investigate the potential links between physico-chemical particle properties and ice-activity. A miniCAST soot generator was used to produce eight different soot samples representing a wide range of physico-chemical properties. A continuous flow diffusion chamber was used to study each sample online in immersion mode over the temperature (T) range from −41 to −32 °C, at a supersaturation of about 10% with respect to liquid water. All samples exhibited low to no heterogeneous immersion freezing. The most active sample reached ice-activated fractions (AF) of 10−3 and 10−4 at temperatures of 1.7 and 1.9 K , respectively, above the homogeneous freezing temperature. The samples were characterized online with respect to a wide range of physico-chemical properties including effective particle density, optical properties, particle surface oxidation and soot maturity. We did observe indications of increasing immersion freezing ice-activity with increasing effective particle density and increasing particulate PAH fraction. Hence, those properties, or other properties co-varying with those, could potentially enhance the immersion freezing ice-activity of the studied soot particle types. However, we found no significant correlation between the physico-chemical properties and the observed ice-nucleating ability when the particle ensemble was extended to include previously published results including more ice-active biomass combustion soot particles. We conclude that it does not appear possible in general and in any straightforward way to link observed soot particle physico-chemical properties to the ice-nucleating ability using the online instrumentation included in this study. Furthermore, our observations support that freshly produced soot particles with a wide range of physico-chemical properties have low to insignificant immersion freezing ice-nucleating ability.
Journal Article
GEOMAGIA50.v3: 1. general structure and modifications to the archeological and volcanic database Recent advances in environmental magnetism and paleomagnetism
by
Nilsson, Andreas
,
Korhonen, Kimmo
,
Donadini, Fabio
in
Earth and Related Environmental Sciences
,
Geofysik
,
Geologi
2015
Background: GEOMAGIA50.v3 is a comprehensive online database providing access to published paleomagnetic, rock magnetic, and chronological data from a variety of materials that record Earth's magnetic field over the past 50 ka. Findings: Since its original release in 2006, the structure and function of the database have been updated and a significant number of data have been added. Notable modifications are the following: (1) the inclusion of additional intensity, directional and metadata from archeological and volcanic materials and an improved documentation of radiocarbon dates; (2) a new data model to accommodate paleomagnetic, rock magnetic, and chronological data from lake and marine sediments; (3) a refinement of the geographic constraints in the archeomagnetic/volcanic query allowing selection of particular locations; (4) more flexible methodological and statistical constraints in the archeomagnetic/volcanic query; (5) the calculation of predictions of the Holocene geomagnetic field from a series of time varying global field models; (6) searchable reference lists; and (7) an updated web interface. This paper describes general modifications to the database and specific aspects of the archeomagnetic and volcanic database. The reader is referred to a companion publication for a description of the sediment database. Conclusions: The archeomagnetic and volcanic part of GEOMAGIA50.v3 currently contains 14,645 data (declination, inclination, and paleointensity) from 461 studies published between 1959 and 2014. We review the paleomagnetic methods used to obtain these data and discuss applications of the data within the database. The database continues to expand as legacy data are added and new studies published. The web-based interface can be found at http://geomagia.gfz-potsdam.de.
Journal Article
Major lower extremity amputation in elderly patients with peripheral arterial disease: incidence and survival rates
2008
Background and aims:
The methods of treating peripheral arterial disease (PAD) have changed and become more prophylactic. This study describes and analyzes 1) the incidence rates of major lower extremity amputation (LEA) due to PAD, 2) occurrence of re-amputation, and 3) the survival of amputees and factors predicting survival.
Methods:
The series consisted of 210 patients (mean age 76.6, SD 10.7 yrs, 45.2% men) who underwent their first, i.e. index, major leg amputation because of PAD, in 1998–2002, in the city of Turku, Finland, population 175,000.
Results:
Theage-and gender-standardized incidence rate of combined above-knee and below-knee amputations was 24.1/100,000 person-years during 1998–2002. Thirty-four per cent of amputees underwent repetitive amputation. One-month mortality was 21% (n=45), one-year mortality 52% (n=109) and overall mortality 80% (n=168). Cardiovascular diseases predicted equally well 31-day, one-year, and overall mortality in age- and gender-adjusted analysis. Multiple co-morbidities (
p
=0.023) and unilateral above-knee amputations (
p
=0.047) were significant predictors for overall mortality in age- and gender-adjusted analysis. Cardiovascular diseases remained a significant predictor for 31-day and overall mortality in multivariate analysis (
p
=0.008 and
p
=0.015, respectively). Amputated patients’ previous vascular procedures did not have any effect on mortality in the Cox model. Most revascularizations were performed less than six months before the index/first major LEA.
Conclusion:
Major LEAs seem to have been done late, and mainly for pain relief in the end-stage of patients with peripheral arterial disease.
Journal Article
Synergistic HNO3–H2SO4–NH3 upper tropospheric particle formation
by
Schobesberger, Siegfried
,
Curtius, Joachim
,
Weber, Stefan K.
in
119/118
,
639/638/169/824
,
704/106/35
2022
New particle formation in the upper free troposphere is a major global source of cloud condensation nuclei (CCN)
1
–
4
. However, the precursor vapours that drive the process are not well understood. With experiments performed under upper tropospheric conditions in the CERN CLOUD chamber, we show that nitric acid, sulfuric acid and ammonia form particles synergistically, at rates that are orders of magnitude faster than those from any two of the three components. The importance of this mechanism depends on the availability of ammonia, which was previously thought to be efficiently scavenged by cloud droplets during convection. However, surprisingly high concentrations of ammonia and ammonium nitrate have recently been observed in the upper troposphere over the Asian monsoon region
5
,
6
. Once particles have formed, co-condensation of ammonia and abundant nitric acid alone is sufficient to drive rapid growth to CCN sizes with only trace sulfate. Moreover, our measurements show that these CCN are also highly efficient ice nucleating particles—comparable to desert dust. Our model simulations confirm that ammonia is efficiently convected aloft during the Asian monsoon, driving rapid, multi-acid HNO
3
–H
2
SO
4
–NH
3
nucleation in the upper troposphere and producing ice nucleating particles that spread across the mid-latitude Northern Hemisphere.
By performing experiments under upper tropospheric conditions, nitric acid, sulfuric acid and ammonia can form particles synergistically, at rates orders of magnitude faster than any two of the three components.
Journal Article
Ice nucleation on surrogates of boreal forest SOA particles: effect of water content and oxidative age
2021
We investigate the effect of water content and oxidative age on ice nucleation using 100 nm monodisperse particles of boreal forest secondary organic aerosol (SOA) surrogates. Ice nucleation experiments are conducted in the temperature range between 210 and 240 K and from ice to water saturation using the Spectrometer for Ice Nuclei (SPIN). The effect of the particle water content on the ice nucleation process is tested by preconditioning α-pinene SOA at different humidities (40 %, 10 % and <1 % RHW). The influence of the particle oxidative age is tested by varying their O:C ratio (oxygen-to-carbon ratio, O:C ∼0.45, 0.8, 1.1). To assess the suitability of α-pinene as a model compound to study the ice nucleation properties of boreal forest SOA and to confirm the atmospheric relevance of our findings, we compare them to measurements of SOA using pine-needle oil or Scots pine tree emissions as precursors. The ice nucleation measurements show that surrogates of boreal forest SOA particles promote only homogeneous ice formation. An effect of preconditioning humidity on homogeneous ice nucleation could be observed. Contrary to the expected behavior, homogeneous freezing is suppressed for SOA particles with high water content (preconditioned at 40 % RHW) and was only observed for SOA preconditioned at low RHW (≤10 %). No dependence of homogeneous freezing on the SOA oxidative age was observed. The results can be explained by a significant change of particulate water diffusivity as a function of humidity (from 10 % to 40 % RHW) at 293 K, where the aerosol is preconditioned. The measurements suggest that at low temperatures, water diffusion into dry SOA particles is slow enough to form a core-shell morphology. The liquid outer layer can equilibrate within the timescale of the experiment and freeze homogeneously. On SOA particles with higher water content, water diffuses faster into the particle, delaying equilibration at the particle surface and preventing the formation of a diluted shell, which can delay homogeneous freezing. We propose that the partial water vapor pressure to which the particles are exposed prior to an experiment can serve as an indicator of whether a core-shell structure is developing.
Journal Article