Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Krentz, Daniela"
Sort by:
Curing Cats with Feline Infectious Peritonitis with an Oral Multi-Component Drug Containing GS-441524
Feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) is a common dis-ease in cats, fatal if untreated, and no effective treatment is currently legally available. The aim of this study was to evaluate efficacy and toxicity of the multi-component drug Xraphconn® in vitro and as oral treatment in cats with spontaneous FIP by examining survival rate, development of clinical and laboratory parameters, viral loads, anti-FCoV antibodies, and adverse effects. Mass spectrometry and nuclear magnetic resonance identified GS-441524 as an active component of Xraphconn®. Eighteen cats with FIP were prospectively followed up while being treated orally for 84 days. Values of key parameters on each examination day were compared to values before treatment initiation using linear mixed-effect models. Xraphconn® displayed high virucidal activity in cell culture. All cats recovered with dramatic improvement of clinical and laboratory parameters and massive reduction in viral loads within the first few days of treatment without serious adverse effects. Oral treatment with Xraphconn® containing GS-441524 was highly effective for FIP without causing serious adverse effects. This drug is an excellent option for the oral treatment of FIP and should be trialed as potential effective treatment option for other severe coronavirus-associated diseases across species.
Fecal Feline Coronavirus RNA Shedding and Spike Gene Mutations in Cats with Feline Infectious Peritonitis Treated with GS-441524
As previously demonstrated by our research group, the oral multicomponent drug Xraphconn® containing GS-441524 was effective at curing otherwise fatal feline infectious peritonitis (FIP) in 18 feline coronavirus (FCoV)-infected cats. The aims of the current study were to investigate, using samples from the same animals as in the previous study, (1) the effect of treatment on fecal viral RNA shedding; (2) the presence of spike gene mutations in different body compartments of these cats; and (3) viral RNA shedding, presence of spike gene mutations, and anti-FCoV antibody titers in samples of 12 companion cats cohabitating with the treated cats. Eleven of the eighteen treated FIP cats (61%) were shedding FCoV RNA in feces within the first three days after treatment initiation, but all of them tested negative by day 6. In one of these cats, fecal shedding reoccurred on day 83. Two cats initially negative in feces were transiently positive 1–4 weeks into the study. The remaining five cats never shed FCoV. Viral RNA loads in feces decreased with time comparable with those in blood and effusion. Specific spike gene mutations linked to systemic FCoV spread were consistently found in blood and effusion from treated FIP cats, but not in feces from treated or companion cats. A new mutation that led to a not yet described amino acid change was identified, indicating that further mutations may be involved in the development of FIP. Eight of the twelve companion cats shed FCoV in feces. All but one of the twelve companion cats had anti-FCoV antibodies. Oral treatment with GS-441524 effectively decreased viral RNA loads in feces, blood, and effusion in cats with FIP. Nonetheless, re-shedding can most likely occur if cats are re-exposed to FCoV by their companion cats.
Short Treatment of 42 Days with Oral GS-441524 Results in Equal Efficacy as the Recommended 84-Day Treatment in Cats Suffering from Feline Infectious Peritonitis with Effusion—A Prospective Randomized Controlled Study
In the past, feline infectious peritonitis (FIP) caused by feline coronavirus (FCoV) was considered fatal. Today, highly efficient drugs, such as GS-441524, can lead to complete remission. The currently recommended treatment duration in the veterinary literature is 84 days. This prospective randomized controlled treatment study aimed to evaluate whether a shorter treatment duration of 42 days with oral GS-441524 obtained from a licensed pharmacy is equally effective compared to the 84-day regimen. Forty cats with FIP with effusion were prospectively included and randomized to receive 15 mg/kg of GS-441524 orally every 24h (q24h), for either 42 or 84 days. Cats were followed for 168 days after treatment initiation. With the exception of two cats that died during the treatment, 38 cats (19 in short, 19 in long treatment group) recovered with rapid improvement of clinical and laboratory parameters as well as a remarkable reduction in viral loads in blood and effusion. Orally administered GS-441524 given as a short treatment was highly effective in curing FIP without causing serious adverse effects. All cats that completed the short treatment course successfully were still in complete remission on day 168. Therefore, a shorter treatment duration of 42 days GS-441524 15 mg/kg can be considered equally effective.
Clinical Follow-Up and Postmortem Findings in a Cat That Was Cured of Feline Infectious Peritonitis with an Oral Antiviral Drug Containing GS-441524
This is the first report on a clinical follow-up and postmortem examination of a cat that had been cured of feline infectious peritonitis (FIP) with ocular manifestation by successful treatment with an oral multicomponent drug containing GS-441524. The cat was 6 months old when clinical signs (recurrent fever, lethargy, lack of appetite, and fulminant anterior uveitis) appeared. FIP was diagnosed by ocular tissue immunohistochemistry after enucleation of the affected eye. The cat was a participant in a FIP treatment study, which was published recently. However, 240 days after leaving the clinic healthy, and 164 days after the end of the 84 days of treatment, the cured cat died in a road traffic accident. Upon full postmortem examination, including histopathology and immunohistochemistry, there were no residual FIP lesions observed apart from a generalized lymphadenopathy due to massive lymphoid hyperplasia. Neither feline coronavirus (FCoV) RNA nor FCoV antigen were identified by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunohistochemistry, respectively, in any tissues or body fluids, including feces. These results prove that oral treatment with GS-441524 leads to the cure of FIP-associated changes and the elimination of FCoV from all tissues.
Alpha-1-Acid Glycoprotein Quantification via Spatial Proximity Analyte Reagent Capture Luminescence Assay: Application as Diagnostic and Prognostic Marker in Serum and Effusions of Cats with Feline Infectious Peritonitis Undergoing GS-441524 Therapy
Until recently, the diagnosis of feline infectious peritonitis (FIP) in cats usually led to euthanasia, but recent research has revealed that antiviral drugs, including the nucleoside analog GS-441524, have the potential to effectively cure FIP. Alpha-1-acid glycoprotein (AGP) has been suggested as a diagnostic marker for FIP. However, AGP quantification methods are not easily accessible. This study aimed to establish a Spatial Proximity Analyte Reagent Capture Luminescence (SPARCLTM) assay on the VetBio-1 analyzer to determine the AGP concentrations in feline serum and effusion samples. Linearity was found in serial dilutions between 1:2000 and 1:32,000; the intra-run and inter-run precision was <5% and <15%, respectively; and AGP was stable in serum stored for at least 8 days at room temperature, at 4 °C and at −20 °C. Cats with confirmed FIP had significantly higher serum AGP concentrations (median: 2954 µg/mL (range: 200–5861 µg/mL)) than those with other inflammatory diseases (median: 1734 µg/mL (305–3449 µg/mL)) and clinically healthy cats (median 235 µg/mL (range: 78–616 µg/mL); pKW < 0.0001). The AGP concentrations were significantly higher in the effusions from cats with FIP than in those from diseased cats without FIP (pMWU < 0.0001). The AGP concentrations in the serum of cats with FIP undergoing GS-441524 treatment showed a significant drop within the first seven days of treatment and reached normal levels after ~14 days. In conclusion, the VetBio-1 SPARCLTM assay offers a precise, fast and cost-effective method to measure the AGP concentrations in serum and effusion samples of feline patients. The monitoring of the AGP concentration throughout FIP treatment provides a valuable marker to evaluate the treatment’s effectiveness and identify potential relapses at an early stage.
Loss of ZnT8 function protects against diabetes by enhanced insulin secretion
A rare loss-of-function allele p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8), which is enriched in Western Finland, protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, particularly when compared with individuals matched for the genotype of a common T2D-risk allele in SLC30A8 , p.Arg325. In genome-edited human induced pluripotent stem cell (iPSC)-derived β-like cells, we establish that the p.Arg138* allele results in reduced SLC30A8 expression due to haploinsufficiency. In human β cells, loss of SLC30A8 leads to increased glucose responsiveness and reduced K ATP channel function similar to isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aimed at maintaining insulin secretion capacity in T2D. The rare loss-of-function allele p.Arg138* in SLC30A8 (encoding ZnT8) mediates protection against type 2 diabetes (T2D) through promoting better insulin secretion and enhanced glucose responsiveness, suggesting ZnT8 as a target for T2D treatment.
The release call of Dendropsophus sanborni (Anura: Hylidae), with comments on release calls within Dendropsophus
Release calls are a non-receptive response to amplexus between different species or conspecific amplexus between males. This call differs between closely related species and can be an important tool for the taxonomy of this group. Here, we describe, for the first time, the release call of Dendropsophus sanborni (Schmidt, 1944) from a record during a field trip in a palm grove in southern Brazil. We recorded two release calls from a male individual of D. sanborni while handling it. These release calls are simply formed by one note with no modulation. Release calls of Dendropsophus are poorly reported in the literature, and comparisons among them are limited. Release calls are possibly much more common than reported in the literature and more description studies are needed. 
El canto de liberación de Dendropsophus sanborni , con comentarios sobre el canto de liberación entre Dendropsophus
Los cantos de liberación son una respuesta al amplexo inadecuado entre diferentes especies o entre machos. Este canto es muy diferente entre especies estrechamente relacionadas y puede ser una herramienta importante para la taxonomía de este grupo. Aquí, describimos por primera vez, el canto de liberación de Dendropsophus sanborni (Schmidt, 1944) a partir de un registro durante un viaje de campo en un palmeral en el sur de Brasil. Grabamos dos cantos de liberación de un individuo macho de D. sanborni mientras se manipulaba. Estos cantos de liberación son simples, formados por una nota sin modulación. Los cantos de liberación de Dendropsophus están poco registrados en la literatura y las comparaciones entre ellos son limitadas. Los cantos de liberación son posiblemente mucho más comunes de lo que se informa en la literatura y se necesitan más estudios de descripción. Palabras clave: Bioacoústica, neotrópicos, repertorio vocal, Dendropsophus Release calls are a non-receptive response to amplexus between different species or conspecific amplexus between males. This call differs between closely related species and can be an important tool for the taxonomy of this group. Here, we describe, for the first time, the release call of Dendropsophus sanborni (Schmidt, 1944) from a record during a field trip in a palm grove in southern Brazil. We recorded two release calls from a male individual of D. sanborni while handling it. These release calls are simply formed by one note with no modulation. Release calls of Dendropsophus are poorly reported in the literature, and comparisons among them are limited. Release calls are possibly much more common than reported in the literature and more description studies are needed. Keywords: Bioacoustics, communication, vocal repertoire, acoustic signals
Loss of ZnT8 function protects against diabetes by enhanced insulin secretion
A rare loss-of-function variant p.Arg138* in SLC30A8 encoding the zinc transporter 8 (ZnT8) enriched in Western Finland protects against type 2 diabetes (T2D). We recruited relatives of the identified carriers and showed that protection was associated with better insulin secretion due to enhanced glucose responsiveness and proinsulin conversion, especially compared with individuals matched for the genotype of a common T2D risk variant in SLC30A8, p.Arg325. In genome-edited human IPS-derived -like cells, we establish that the p.Arg138* variant results in reduced SLC30A8 expression due to haploinsufficiency. In human -cells loss of SLC30A8 leads to increased glucose responsiveness and reduced KATP channel function, which was also seen in isolated islets from carriers of the T2D-protective allele p.Trp325. These data position ZnT8 as an appealing target for treatment aiming at maintaining insulin secretion capacity in T2D.