Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Reading LevelReading Level
-
Content TypeContent Type
-
YearFrom:-To:
-
More FiltersMore FiltersItem TypeIs Full-Text AvailableSubjectPublisherSourceDonorLanguagePlace of PublicationContributorsLocation
Done
Filters
Reset
5,947
result(s) for
"Lian, Yang"
Sort by:
A tower built downwards
Written between 2019 and 2021, 'A Tower Built Downwards' is rooted in Yang Lian's living experience of the historical retrogression of Hong Kong, the disaster of Covid-19, and the global spiritual crisis, with an extraordinary cover by Ai Weiwei as metaphor for the book's content.
Effects of drought-stress on seed germination and growth physiology of quinclorac-resistant Echinochloa crusgalli
2019
Echinochloa crusgalli (L.) Beauv. (barnyard grass) is considered a noxious weed worldwide, and is the most pernicious weed decreasing rice yields in China. Recently, E. crusgalli has evolved quinclorac resistance, making it among the most serious herbicide resistant weeds in China. The present study explored differences in germination and growth between quinclorac-resistant and -susceptible E. crusgalli collected in Hunan Province. The order of the seven E. crusgalli biotypes assessed, from high to low quinclorac-resistance, was: quinclorac-resistant, Chunhua, Hanshou, Shimen, Hekou, Dingcheng, and quinclorac-susceptible. With an increased in the level of quinclorac-resistance, the germination rate, length of young shoots and roots, and fresh weight of E. crusgalli were all decreased compared with that in more susceptible biotypes. However, there were no significant differences between quinclorac-resistant and susceptible E. crusgalli biotypes without polyethylene glycol 6000 treatment. Drought had a more obvious effect on glutathione S-transferases (GST) activity, determined by spectrophotometric method, in quinclorac-resistant E. crusgalli. Higher resistance level biotypes showed greater activity, and when treated with polyethylene glycol 6000 for 3 days, all E. crusgalli biotypes showed the highest GST activity. This study demonstrated that as the level of quinclorac-resistance increased, the rate of seed germination decreased, while the growth of young buds, young roots, and fresh weight decreased. Increased quinclorac-resistance may be related to the increased metabolic activity of GST in E. crusgalli.
Journal Article
Methylamine-assisted growth of uniaxial-oriented perovskite thin films with millimeter-sized grains
2020
Defects from grain interiors and boundaries of perovskite films cause significant nonradiative recombination energy loss, and thus perovskite films with controlled crystallinity and large grains is critical for improvement of both photovoltaic performance and stability for perovskite-based solar cells. Here, a methylamine (MA
0
) gas-assisted crystallization method is developed for fabrication of methylammonium lead iodide (MAPbI
3
) perovskite films. In the process, the perovskite film is formed via controlled release of MA0 gas molecules from a liquid intermediate phase MAPbI
3
·xMA
0
. The resulting perovskite film comprises millimeter-sized grains with (110)-uniaxial crystallographic orientation, exhibiting much low trap density, long carrier lifetime, and excellent environmental stability. The corresponding perovskite solar cell exhibits a power conversion efficiency (PCE) of ~ 21.36%, which is among the highest reported for MAPbI
3
-based devices. This method provides important progress towards the fabrication of high-quality perovskite thin films for low-cost, highly efficient and stable perovskite solar cells.
Suppressing grain boundaries and defects in perovskite solar cells remains a quest to address the efficiency and stability issues. Here, the authors use methylamine gas for assisting the growth of uniaxial-oriented perovskite thin films with millimeter-sized grains.
Journal Article
A natural biological adhesive from snail mucus for wound repair
2023
The discovery of natural adhesion phenomena and mechanisms has advanced the development of a new generation of tissue adhesives in recent decades. In this study, we develop a natural biological adhesive from snail mucus gel, which consists a network of positively charged protein and polyanionic glycosaminoglycan. The malleable bulk adhesive matrix can adhere to wet tissue through multiple interactions. The biomaterial exhibits excellent haemostatic activity, biocompatibility and biodegradability, and it is effective in accelerating the healing of full-thickness skin wounds in both normal and diabetic male rats. Further mechanistic study shows it effectively promotes the polarization of macrophages towards the anti-inflammatory phenotype, alleviates inflammation in chronic wounds, and significantly improves epithelial regeneration and angiogenesis. Its abundant heparin-like glycosaminoglycan component is the main active ingredient. These findings provide theoretical and material insights into bio-inspired tissue adhesives and bioengineered scaffold designs.
Natural adhesives have received a lot of attention recently. Here, the authors develop a natural biological adhesive from snail mucus that can adhere to wet tissue and be used to accelerate healing of skin wounds.
Journal Article
NAD(P)HX epimerase downregulation promotes tumor progression through ROS/HIF‐1α signaling in hepatocellular carcinoma
2021
Reactive oxygen species (ROS) derived from aberrant tumor metabolism could contribute to tumor invasion and metastasis. NAD(P)HX Epimerase (NAXE), an epimerase that allows the repair of damaged forms of antioxidant NADPH, is a potential cellular ROS scavenger and its role in tumor development is still elusive. Here, we found that NAXE is significantly downregulated in hepatocellular carcinoma (HCC) tissues and cell lines. NAXE downregulation is associated with poor clinicopathological characteristics and is an independent risk factor for overall and disease‐free survival of HCC patients after liver resection. In addition, low NAXE expression could identify worse prognosis of HCC patients before vascular invasion or in early stages of disease. In particularly, low NAXE expression in HCC is markedly associated with microvascular invasion (MVI) and its combination with MVI predicts poorer prognosis of HCC patients after liver resection. Furthermore, in vitro and in vivo experiments both showed that knockdown of NAXE expression in HCC cells promoted migration, invasion, and metastasis by inducing epithelial‐mesenchymal transition (EMT), whereas NAXE overexpression causes the opposite effects. Mechanistically, low NAXE expression reduced NADPH levels and further caused ROS level increase and hypoxia‐inducible factor‐1α (HIF‐1α) activation, thereby promoting invasion and metastasis of HCC by facilitating EMT. What is more, the tumor‐promoting effect of NAXE knockdown in HCC xenograft can be abolished by giving mice N‐acetyl‐l‐cysteine (NAC) in drinking water. Taken together, our findings uncovered a tumor suppressor role for NAXE in HCC by scavenging excessive ROS and inhibiting tumor‐promoting signaling pathways, suggesting a new strategy for HCC therapy by targeting redox signaling.
NAXE is significantly downregulated in HCC. Its downregulation indicates poor prognosis of HCC patients and promotes invasion and metastasis by inducing EMT by activating ROS/HIF‐1α signaling. NAC can reverse the tumor‐promoting effect of NAXE downregulation, providing a new approach for antioxidant treatment in HCC.
Journal Article
The Intestinal Microbiome Primes Host Innate Immunity against Enteric Virus Systemic Infection through Type I Interferon
2021
While cumulative data indicate that indigenous commensal bacteria can facilitate enteric virus infection, little is known regarding whether intestinal microbes have a protective role in antagonizing enteric systemic infection by modulating host innate immunity. Although accumulating literature has pointed out that the microbiota has a fundamental impact on host systemic antiviral innate immune responses mediated by type I interferon (IFN), only a few specific commensal bacteria species have been revealed to be capable of regulating IFN-I and ISG expression, not to mention the underlying mechanisms.
Intestinal microbiomes are of vital importance in antagonizing systemic viral infection. However, very little literature has shown whether commensal bacteria play a crucial role in protecting against enteric virus systemic infection from the aspect of modulating host innate immunity. In the present study, we utilized an enteric virus, encephalomyocarditis virus (EMCV), to inoculate mice treated with phosphate-buffered saline (PBS) or given an antibiotic cocktail (Abx) orally or intraperitoneally to examine the impact of microbiota depletion on virulence and viral replication
in vivo
. Microbiota depletion exacerbated the mortality, neuropathogenesis, viremia, and viral burden in brains following EMCV infection. Furthermore, Abx-treated mice exhibited severely diminished mononuclear phagocyte activation and impaired type I interferon (IFN) production and expression of IFN-stimulated genes (ISG) in peripheral blood mononuclear cells (PBMC), spleens, and brains. With the help of fecal bacterial 16S rRNA sequencing of PBS- and Abx-treated mice, we identified a single commensal bacterium,
Blautia coccoides
, that can restore mononuclear phagocyte- and IFNAR (IFN-α/β receptor)-dependent type I IFN responses to restrict systemic enteric virus infection. These findings may provide insight into the development of novel therapeutics for preventing enteric virus infection or possibly alleviating clinical diseases by activating host systemic innate immune responses via respective probiotic treatment using
B. coccoides
.
IMPORTANCE
While cumulative data indicate that indigenous commensal bacteria can facilitate enteric virus infection, little is known regarding whether intestinal microbes have a protective role in antagonizing enteric systemic infection by modulating host innate immunity. Although accumulating literature has pointed out that the microbiota has a fundamental impact on host systemic antiviral innate immune responses mediated by type I interferon (IFN), only a few specific commensal bacteria species have been revealed to be capable of regulating IFN-I and ISG expression, not to mention the underlying mechanisms. Thus, it is important to understand the cross talk between microbiota and host anti-enteric virus innate immune responses and characterize the specific bacterial species that possess protective functions. Our study demonstrates how fundamental innate immune mediators such as mononuclear phagocytes and type I IFN are regulated by commensal bacteria to antagonize enteric virus systemic infection. In particular, we have identified a novel commensal bacterium,
Blautia coccoides
, that can restrict enteric virus replication and neuropathogenesis by activating IFN-I and ISG responses in mononuclear phagocytes via an IFNAR- and STAT1-mediated signaling pathway.
Journal Article
Torso hemorrhage: noncompressible? never say never
2024
Since limb bleeding has been well managed by extremity tourniquets, the management of exsanguinating torso hemorrhage (TH) has become a hot issue both in military and civilian medicine. Conventional hemostatic techniques are ineffective for managing traumatic bleeding of organs and vessels within the torso due to the anatomical features. The designation of noncompressible torso hemorrhage (NCTH) marks a significant step in investigating the injury mechanisms and developing effective methods for bleeding control. Special tourniquets such as abdominal aortic and junctional tourniquet and SAM junctional tourniquet designed for NCTH have been approved by FDA for clinical use. Combat ready clamp and junctional emergency treatment tool also exhibit potential for external NCTH control. In addition, resuscitative endovascular balloon occlusion of the aorta (REBOA) further provides an endovascular solution to alleviate the challenges of NCTH treatment. Notably, NCTH cognitive surveys have revealed that medical staff have deficiencies in understanding relevant concepts and treatment abilities. The stereotypical interpretation of NCTH naming, particularly the term noncompressible, is the root cause of this issue. This review discusses the dynamic relationship between TH and NCTH by tracing the development of external NCTH control techniques. The authors propose to further subdivide the existing NCTH into compressible torso hemorrhage and NCTH’ (noncompressible but REBOA controllable) based on whether hemostasis is available via external compression. Finally, due to the irreplaceability of special tourniquets during the prehospital stage, the authors emphasize the importance of a package program to improve the efficacy and safety of external NCTH control. This program includes the promotion of tourniquet redesign and hemostatic strategies, personnel reeducation, and complications prevention.
Journal Article
Association between sarcopenia and clinical outcomes in patients with hepatocellular carcinoma: an updated meta-analysis
by
Ren, Yanqiao
,
Zhu, Licheng
,
Guo, Yusheng
in
631/114
,
631/67
,
Carcinoma, Hepatocellular - pathology
2023
Although numerous studies have reported the association between sarcopenia and the prognosis of hepatocellular carcinoma (HCC) patients, there is lack of a newer and more comprehensive meta-analysis. Herein, a comprehensive literature search was performed on PubMed, Web of Science, the Cochrane Library, and Embase databases to identify relevant studies published up to February 2022. The outcomes were overall survival (OS), recurrence, progression‐free survival, tumor response, severe postoperative complications, and toxicity of drugs. A total of 57 studies involving 9790 HCC patients were included in the meta-analysis. The pooled prevalence of sarcopenia in HCC patients was 41.7% (95% CI 36.2–47.2%). Results demonstrated that sarcopenia was significantly associated with impaired OS (HR: 1.93, 95% CI 1.73–2.17,
P
< 0.001), higher risk of tumor recurrence (HR: 1.75, 95% CI 1.56–1.96,
P
< 0.001), lower objective response rate (OR: 0.37 95% CI 0.17–0.81,
P
= 0.012), and more drug-related adverse events (OR: 2.23, 95% CI 1.17–4.28,
P
= 0.015) in HCC patients. The subgroup analyses revealed that the OS of patients at the early stage of tumor was more severely affected by sarcopenia than for patients at other stages. Moreover, the presence of cirrhosis and Child Pugh class B increased the hazard of mortality from sarcopenia. This study has shown that sarcopenia is highly associated with poor prognosis in HCC patients. In addition, cirrhosis and poor liver functional reserve increase the danger of sarcopenia. OS was more impaired in HCC patients with sarcopenia at early stage of tumor than at other tumor stages.
Journal Article
Hepatocellular carcinoma cells remodel the pro-metastatic tumour microenvironment through recruitment and activation of fibroblasts via paracrine Egfl7 signaling
2023
Background
The tumour microenvironment consists of a complex and dynamic milieu of cancer cells, including tumour-associated stromal cells (leukocytes, fibroblasts, vascular cells, etc.) and their extracellular products. During invasion and metastasis, cancer cells actively remodel the tumour microenvironment and alterations of microenvironment, particularly cancer-associated fibroblasts (CAFs), can promote tumour progression. However, the underlying mechanisms of the CAF formation and their metastasis-promoting functions remain unclear.
Methods
Primary liver fibroblasts and CAFs were isolated and characterized. CAFs in clinical samples were identified by immunohistochemical staining and the clinical significance of CAFs was also analysed in two independent cohorts. A transwell coculture system was used to confirm the role of HCC cells in CAF recruitment and activation. qRT-PCR, western blotting and ELISA were used to screen paracrine cytokines. The role and mechanism of Egfl7 in CAFs were explored via an in vitro coculture system and an in vivo mouse orthotopic transplantation model.
Results
We showed that CAFs in hepatocellular carcinoma (HCC) are characterized by the expression of α-SMA and that HCC cells can recruit liver fibroblasts (LFs) and activate them to promote their transformation into CAFs. High α-SMA expression, indicating high CAF infiltration, was correlated with malignant characteristics. It was also an independent risk factor for HCC survival and could predict a poor prognosis in HCC patients. Then, we demonstrated that EGF-like domain multiple 7 (Egfl7) was preferentially secreted by HCC cells, and exhibited high potential to recruit and activate LFs into the CAF phenotype. The ability of Egfl7 to modulate LFs relies upon increased phosphorylation of FAK and AKT via the receptor α
ν
β
3
integrin. Strikingly, CAFs activated by paracrine Egfl7 could further remodel the tumour microenvironment by depositing fibrils and collagen and in turn facilitate HCC cell proliferation, invasion and metastasis.
Conclusion
Our data highlighted a novel role of Egfl7 in remodelling the tumour microenvironment: it recruits LFs and activates them to promote their transformation into CAFs via the α
ν
β
3
integrin signaling pathway, which further promotes HCC progression and contributes to poor clinical outcomes in HCC patients.
3o7rdHzTehVwN25qa8k-AT
Video Abstract
Journal Article
Targeting STAT3 by a small molecule suppresses pancreatic cancer progression
2021
Pancreatic cancer is lethal in over 90% of cases since it is resistant to current therapeutic strategies. The key role of STAT3 in promoting pancreatic cancer progression has been proven, but effective interventions that suppress STAT3 activities are limited. The development of novel anticancer agents that directly target STAT3 may have potential clinical benefits for pancreatic cancer treatment. Here, we report a new small-molecule inhibitor (N4) with potent antitumor bioactivity, which inhibits multiple oncogenic processes in pancreatic cancer. N4 blocked STAT3 and phospho-tyrosine (pTyr) peptide interactions in fluorescence polarization (FP) assay, specifically abolished phosphor-STAT3 (Tyr705), and suppressed expression of STAT3 downstream genes. The mechanism involved the direct binding of N4 to the STAT3 SH2 domain, thereby, the STAT3 dimerization, STAT3-EGFR, and STAT3-NF-κB cross-talk were efficiently inhibited. In animal models of pancreatic cancer, N4 was well tolerated, suppressed tumor growth and metastasis, and significantly prolonged survival of tumor-bearing mice. Our results offer a preclinical proof of concept for N4 as a candidate therapeutic compound for pancreatic cancer.
Journal Article