Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
148 result(s) for "Marchesi, Julian R."
Sort by:
The vocabulary of microbiome research: a proposal
ᅟ The advancement of DNA/RNA, proteins, and metabolite analytical platforms, combined with increased computing technologies, has transformed the field of microbial community analysis. This transformation is evident by the exponential increase in the number of publications describing the composition and structure, and sometimes function, of the microbial communities inhabiting the human body. This rapid evolution of the field has been accompanied by confusion in the vocabulary used to describe different aspects of these communities and their environments. The misuse of terms such as microbiome, microbiota, metabolomic, and metagenome and metagenomics among others has contributed to misunderstanding of many study results by the scientific community and the general public alike. A few review articles have previously defined those terms, but mainly as sidebars, and no clear definitions or use cases have been published. In this editorial, we aim to propose clear definitions of each of these terms, which we would implore scientists in the field to adopt and perfect.
Gut microbiota modulation of chemotherapy efficacy and toxicity
Key Points Evidence is increasing that the gut microbiota modulate the actions of chemotherapeutic drugs used in cancer and other diseases We propose the 'TIMER' mechanistic framework to explain how gut bacteria influence chemotherapy effects on the host: Translocation, Immunomodulation, Metabolism, Enzymatic degradation and Reduced diversity and ecological variation A number of tools for manipulating the gut microbiota in this context, including dietary modifications, probiotics and synthetically engineered bacteria, are in development The gut microbiota will be central to the future of personalized cancer treatment strategies Evidence is growing that the gut microbiota can modulate the actions of chemotherapy. Here, the authors discuss the available data from human, animal and in vitro studies and describe the implications of pharmacomicrobiomics in cancer therapeutics. Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.
Next-generation probiotics: the spectrum from probiotics to live biotherapeutics
The leading probiotics currently available to consumers are generally drawn from a narrow range of organisms. Knowledge of the gut microbiota and its constituent actors is changing this paradigm, particularly given the phylogenetic range and relatively unknown characteristics of the organisms under investigation as novel therapeutics. For this reason, and because their development is likely to be more amenable to a pharmaceutical than a food delivery route, these organisms are often operationally referred to as next-generation probiotics, a concept that overlaps with the emerging concept of live biotherapeutic products. The latter is a class of organisms developed exclusively for pharmaceutical application. In this Perspective, we discuss what lessons have been learned from working with traditional probiotics, explore the kinds of organisms that are likely to be used as novel microbial therapeutics, discuss the regulatory framework required, and propose how scientists may meet this challenge. This Perspective describes how lessons learned from traditional probiotics will inform the next generation of probiotics and live biotherapeutic products and the microorganisms suitable for development, and the regulatory framework required to do so.
The vaginal microbiota associates with the regression of untreated cervical intraepithelial neoplasia 2 lesions
Emerging evidence suggests associations between the vaginal microbiota (VMB) composition, human papillomavirus (HPV) infection, and cervical intraepithelial neoplasia (CIN); however, causal inference remains uncertain. Here, we use bacterial DNA sequencing from serially collected vaginal samples from a cohort of 87 adolescent and young women aged 16–26 years with histologically confirmed, untreated CIN2 lesions to determine whether VMB composition affects rates of regression over 24 months. We show that women with a Lactobacillus- dominant microbiome at baseline are more likely to have regressive disease at 12 months. Lactobacillus spp. depletion and presence of specific anaerobic taxa including Megasphaera, Prevotella timonensis and Gardnerella vaginalis are associated with CIN2 persistence and slower regression. These findings suggest that VMB composition may be a future useful biomarker in predicting disease outcome and tailoring surveillance, whilst it may offer rational targets for the development of new prevention and treatment strategies. Persistent infection with human papillomavirus can lead to cervical intraepithelial neoplasia (CIN). Here, the authors profile the vaginal microbiota in a cohort of non-pregnant young women diagnosed with CIN2 and find that absence of Lactobacillus spp. and presence of a diverse population of strict anaerobes associates with a decreased regression of untreated CIN2 lesions.
Host-microbiota interactions: from holobiont theory to analysis
In the recent years, the holobiont concept has emerged as a theoretical and experimental framework to study the interactions between hosts and their associated microbial communities in all types of ecosystems. The spread of this concept in many branches of biology results from the fairly recent realization of the ubiquitous nature of host-associated microbes and their central role in host biology, ecology, and evolution. Through this special series “Host-microbiota interactions: from holobiont theory to analysis,” we wanted to promote this field of research which has considerable implications for human health, food production, and ecosystem protection. In this preface, we highlight a collection of articles selected for this special issue that show, use, or debate the concept of holobiont to approach taxonomically and ecologically diverse organisms, from humans and plants to sponges and insects. We also identify some theoretical and methodological challenges and propose directions for future research on holobionts.
Fecal microbiota transplantation plus anti-PD-1 immunotherapy in advanced melanoma: a phase I trial
Fecal microbiota transplantation (FMT) represents a potential strategy to overcome resistance to immune checkpoint inhibitors in patients with refractory melanoma; however, the role of FMT in first-line treatment settings has not been evaluated. We conducted a multicenter phase I trial combining healthy donor FMT with the PD-1 inhibitors nivolumab or pembrolizumab in 20 previously untreated patients with advanced melanoma. The primary end point was safety. No grade 3 adverse events were reported from FMT alone. Five patients (25%) experienced grade 3 immune-related adverse events from combination therapy. Key secondary end points were objective response rate, changes in gut microbiome composition and systemic immune and metabolomics analyses. The objective response rate was 65% (13 of 20), including four (20%) complete responses. Longitudinal microbiome profiling revealed that all patients engrafted strains from their respective donors; however, the acquired similarity between donor and patient microbiomes only increased over time in responders. Responders experienced an enrichment of immunogenic and a loss of deleterious bacteria following FMT. Avatar mouse models confirmed the role of healthy donor feces in increasing anti-PD-1 efficacy. Our results show that FMT from healthy donors is safe in the first-line setting and warrants further investigation in combination with immune checkpoint inhibitors. ClinicalTrials.gov identifier NCT03772899 . In patients with advanced melanoma, fecal microbiota transplantation from healthy donors combined with the anti-PD-1 inhibitors nivolumab or pembrolizumab was well tolerated with an encouraging objective response rate of 65% in the first-line treatment setting.
Diversity of Bifidobacteria within the Infant Gut Microbiota
The human gastrointestinal tract (GIT) represents one of the most densely populated microbial ecosystems studied to date. Although this microbial consortium has been recognized to have a crucial impact on human health, its precise composition is still subject to intense investigation. Among the GIT microbiota, bifidobacteria represent an important commensal group, being among the first microbial colonizers of the gut. However, the prevalence and diversity of members of the genus Bifidobacterium in the infant intestinal microbiota has not yet been fully characterized, while some inconsistencies exist in literature regarding the abundance of this genus. In the current report, we assessed the complexity of the infant intestinal bifidobacterial population by analysis of pyrosequencing data of PCR amplicons derived from two hypervariable regions of the 16 S rRNA gene. Eleven faecal samples were collected from healthy infants of different geographical origins (Italy, Spain or Ireland), feeding type (breast milk or formula) and mode of delivery (vaginal or caesarean delivery), while in four cases, faecal samples of corresponding mothers were also analyzed. In contrast to several previously published culture-independent studies, our analysis revealed a predominance of bifidobacteria in the infant gut as well as a profile of co-occurrence of bifidobacterial species in the infant's intestine.
Towards the Human Colorectal Cancer Microbiome
Multiple factors drive the progression from healthy mucosa towards sporadic colorectal carcinomas and accumulating evidence associates intestinal bacteria with disease initiation and progression. Therefore, the aim of this study was to provide a first high-resolution map of colonic dysbiosis that is associated with human colorectal cancer (CRC). To this purpose, the microbiomes colonizing colon tumor tissue and adjacent non-malignant mucosa were compared by deep rRNA sequencing. The results revealed striking differences in microbial colonization patterns between these two sites. Although inter-individual colonization in CRC patients was variable, tumors consistently formed a niche for Coriobacteria and other proposed probiotic bacterial species, while potentially pathogenic Enterobacteria were underrepresented in tumor tissue. As the intestinal microbiota is generally stable during adult life, these findings suggest that CRC-associated physiological and metabolic changes recruit tumor-foraging commensal-like bacteria. These microbes thus have an apparent competitive advantage in the tumor microenvironment and thereby seem to replace pathogenic bacteria that may be implicated in CRC etiology. This first glimpse of the CRC microbiome provides an important step towards full understanding of the dynamic interplay between intestinal microbial ecology and sporadic CRC, which may provide important leads towards novel microbiome-related diagnostic tools and therapeutic interventions.
Comparative analysis of pyrosequencing and a phylogenetic microarray for exploring microbial community structures in the human distal intestine
Variations in the composition of the human intestinal microbiota are linked to diverse health conditions. High-throughput molecular technologies have recently elucidated microbial community structure at much higher resolution than was previously possible. Here we compare two such methods, pyrosequencing and a phylogenetic array, and evaluate classifications based on two variable 16S rRNA gene regions. Over 1.75 million amplicon sequences were generated from the V4 and V6 regions of 16S rRNA genes in bacterial DNA extracted from four fecal samples of elderly individuals. The phylotype richness, for individual samples, was 1,400-1,800 for V4 reads and 12,500 for V6 reads, and 5,200 unique phylotypes when combining V4 reads from all samples. The RDP-classifier was more efficient for the V4 than for the far less conserved and shorter V6 region, but differences in community structure also affected efficiency. Even when analyzing only 20% of the reads, the majority of the microbial diversity was captured in two samples tested. DNA from the four samples was hybridized against the Human Intestinal Tract (HIT) Chip, a phylogenetic microarray for community profiling. Comparison of clustering of genus counts from pyrosequencing and HITChip data revealed highly similar profiles. Furthermore, correlations of sequence abundance and hybridization signal intensities were very high for lower-order ranks, but lower at family-level, which was probably due to ambiguous taxonomic groupings. The RDP-classifier consistently assigned most V4 sequences from human intestinal samples down to genus-level with good accuracy and speed. This is the deepest sequencing of single gastrointestinal samples reported to date, but microbial richness levels have still not leveled out. A majority of these diversities can also be captured with five times lower sampling-depth. HITChip hybridizations and resulting community profiles correlate well with pyrosequencing-based compositions, especially for lower-order ranks, indicating high robustness of both approaches. However, incompatible grouping schemes make exact comparison difficult.
International Cancer Microbiome Consortium consensus statement on the role of the human microbiome in carcinogenesis
ObjectiveIn this consensus statement, an international panel of experts deliver their opinions on key questions regarding the contribution of the human microbiome to carcinogenesis.DesignInternational experts in oncology and/or microbiome research were approached by personal communication to form a panel. A structured, iterative, methodology based around a 1-day roundtable discussion was employed to derive expert consensus on key questions in microbiome-oncology research.ResultsSome 18 experts convened for the roundtable discussion and five key questions were identified regarding: (1) the relevance of dysbiosis/an altered gut microbiome to carcinogenesis; (2) potential mechanisms of microbiota-induced carcinogenesis; (3) conceptual frameworks describing how the human microbiome may drive carcinogenesis; (4) causation versus association; and (5) future directions for research in the field.The panel considered that, despite mechanistic and supporting evidence from animal and human studies, there is currently no direct evidence that the human commensal microbiome is a key determinant in the aetiopathogenesis of cancer. The panel cited the lack of large longitudinal, cohort studies as a principal deciding factor and agreed that this should be a future research priority. However, while acknowledging gaps in the evidence, expert opinion was that the microbiome, alongside environmental factors and an epigenetically/genetically vulnerable host, represents one apex of a tripartite, multidirectional interactome that drives carcinogenesis.ConclusionData from longitudinal cohort studies are needed to confirm the role of the human microbiome as a key driver in the aetiopathogenesis of cancer.