Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
4
result(s) for
"Marten, Ruby"
Sort by:
Rapid growth of new atmospheric particles by nitric acid and ammonia condensation
2020
A list of authors and their affiliations appears at the end of the paper New-particle formation is a major contributor to urban smog
1
,
2
, but how it occurs in cities is often puzzling
3
. If the growth rates of urban particles are similar to those found in cleaner environments (1–10 nanometres per hour), then existing understanding suggests that new urban particles should be rapidly scavenged by the high concentration of pre-existing particles. Here we show, through experiments performed under atmospheric conditions in the CLOUD chamber at CERN, that below about +5 degrees Celsius, nitric acid and ammonia vapours can condense onto freshly nucleated particles as small as a few nanometres in diameter. Moreover, when it is cold enough (below −15 degrees Celsius), nitric acid and ammonia can nucleate directly through an acid–base stabilization mechanism to form ammonium nitrate particles. Given that these vapours are often one thousand times more abundant than sulfuric acid, the resulting particle growth rates can be extremely high, reaching well above 100 nanometres per hour. However, these high growth rates require the gas-particle ammonium nitrate system to be out of equilibrium in order to sustain gas-phase supersaturations. In view of the strong temperature dependence that we measure for the gas-phase supersaturations, we expect such transient conditions to occur in inhomogeneous urban settings, especially in wintertime, driven by vertical mixing and by strong local sources such as traffic. Even though rapid growth from nitric acid and ammonia condensation may last for only a few minutes, it is nonetheless fast enough to shepherd freshly nucleated particles through the smallest size range where they are most vulnerable to scavenging loss, thus greatly increasing their survival probability. We also expect nitric acid and ammonia nucleation and rapid growth to be important in the relatively clean and cold upper free troposphere, where ammonia can be convected from the continental boundary layer and nitric acid is abundant from electrical storms
4
,
5
.
Measurements in the CLOUD chamber at CERN show that the rapid condensation of ammonia and nitric acid vapours could be important for the formation and survival of new particles in wintertime urban conditions, contributing to urban smog.
Journal Article
The gas-phase formation mechanism of iodic acid as an atmospheric aerosol source
by
Wagner, Andrea C
,
Wang, Dongyu S
,
Curtius, Joachim
in
Aerosols
,
Atmospheric aerosols
,
Atmospheric chemistry
2023
Iodine is a reactive trace element in atmospheric chemistry that destroys ozone and nucleates particles. Iodine emissions have tripled since 1950 and are projected to keep increasing with rising O3 surface concentrations. Although iodic acid (HIO3) is widespread and forms particles more efficiently than sulfuric acid, its gas-phase formation mechanism remains unresolved. Here, in CLOUD atmospheric simulation chamber experiments that generate iodine radicals at atmospherically relevant rates, we show that iodooxy hypoiodite, IOIO, is efficiently converted into HIO3 via reactions (R1) IOIO + O3 → IOIO4 and (R2) IOIO4 + H2O → HIO3 + HOI + (1)O2. The laboratory-derived reaction rate coefficients are corroborated by theory and shown to explain field observations of daytime HIO3 in the remote lower free troposphere. The mechanism provides a missing link between iodine sources and particle formation. Because particulate iodate is readily reduced, recycling iodine back into the gas phase, our results suggest a catalytic role of iodine in aerosol formation.Iodic acid (HIO3) forms aerosols very efficiently, but its gas-phase formation mechanism is not well understood. Atmospheric simulation chamber experiments, quantum chemical calculations and kinetic modelling have now revealed that HIO3 forms as an early iodine oxidation product from hypoiodite. The mechanism explains field measurements and suggests a catalytic role for iodine in particle formation.
Journal Article
Measurement of the collision rate coefficients between atmospheric ions and multiply charged aerosol particles in the CERN CLOUD chamber
by
Welti, André
,
Lopez, Brandon
,
Curtius, Joachim
in
Aerosol particles
,
Aerosol-cloud interactions
,
Aerosols
2023
Aerosol particles have an important role in Earth's
radiation balance and climate, both directly and indirectly through
aerosol–cloud interactions. Most aerosol particles in the atmosphere are
weakly charged, affecting both their collision rates with ions and neutral
molecules, as well as the rates by which they are scavenged by other aerosol
particles and cloud droplets. The rate coefficients between ions and aerosol
particles are important since they determine the growth rates and lifetimes
of ions and charged aerosol particles, and so they may influence cloud
microphysics, dynamics, and aerosol processing. However, despite their
importance, very few experimental measurements exist of charged aerosol
collision rates under atmospheric conditions, where galactic cosmic rays in
the lower troposphere give rise to ion pair concentrations of around 1000 cm−3. Here we present measurements in the CERN CLOUD chamber of the
rate coefficients between ions and small (<10 nm) aerosol particles
containing up to 9 elementary charges, e. We find the rate coefficient of a
singly charged ion with an oppositely charged particle increases from 2.0
(0.4–4.4) × 10−6 cm3 s−1 to 30.6 (24.9–45.1) × 10−6 cm3 s−1 for particles with charges of 1 to
9 e, respectively, where the parentheses indicate the ±1σ
uncertainty interval. Our measurements are compatible with theoretical
predictions and show excellent agreement with the model of
Gatti and Kortshagen (2008).
Journal Article
Chemical composition of nanoparticles from α-pinene nucleation and the influence of isoprene and relative humidity at low temperature
2021
Biogenic organic precursors play an important role in atmospheric new particle formation (NPF). One of the major precursor species is α-pinene, which upon oxidation can form a suite of products covering a wide range of volatilities. Highly oxygenated organic molecules (HOMs) comprise a fraction of the oxidation products formed. While it is known that HOMs contribute to secondary organic aerosol (SOA) formation, including NPF, they have not been well studied in newly formed particles due to their very low mass concentrations. Here we present gas- and particle-phase chemical composition data from experimental studies of α-pinene oxidation, including in the presence of isoprene, at temperatures (-50 and -30 .sup.\" C) and relative humidities (20 % and 60 %) relevant in the upper free troposphere. The measurements took place at the CERN Cosmics Leaving Outdoor Droplets (CLOUD) chamber. The particle chemical composition was analyzed by a thermal desorption differential mobility analyzer (TD-DMA) coupled to a nitrate chemical ionization-atmospheric pressure interface-time-of-flight (CI-APi-TOF) mass spectrometer. CI-APi-TOF was used for particle- and gas-phase measurements, applying the same ionization and detection scheme. Our measurements revealed the presence of C.sub.8-10 monomers and C.sub.18-20 dimers as the major compounds in the particles (diameter up to ⼠100 nm). Particularly, for the system with isoprene added, C.sub.5 (C.sub.5 H.sub.10 O.sub.5-7) and C.sub.15 compounds (C.sub.15 H.sub.24 O.sub.5-10) were detected. This observation is consistent with the previously observed formation of such compounds in the gas phase. However, although the C.sub.5 and C.sub.15 compounds do not easily nucleate, our measurements indicate that they can still contribute to the particle growth at free tropospheric conditions. For the experiments reported here, most likely isoprene oxidation products enhance the growth of particles larger than 15 nm. Additionally, we report on the nucleation rates measured at 1.7 nm (J.sub.1.7 nm) and compared with previous studies, we found lower J.sub.1.7 nm values, very likely due to the higher α-pinene and ozone mixing ratios used in the present study.
Journal Article