Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
50 result(s) for "McBride, Raymond"
Sort by:
Three-dimensional characterization of modifications in sapphire exposed to laser-induced damage using multimodal spectral microimaging
Sapphire (Al 2 O 3 ) is a commonly used dielectric material with many applications in lasers and optical systems. Owing to its high resistivity to laser induced damage, it is particularly suitable for use in high power laser systems. This work focuses on developing techniques to characterize material modifications in sapphire. These techniques were applied following localized laser induced ablation, commonly referred to as laser-damage, resulting from exposure to single 100-ps and 6-ns pulses. Measurements of fluorescence-based piezospectroscopy and confocal Raman microscopy were performed with spatial resolution on the order of 1 μm. Raman microscopy reveals that the relaxation of material exposed to the rapid laser heating, elastic and viscoplastic deformation, melting, and solidification leads to the formation of a polycrystalline material phase. In addition, narrowband fluorescence lines, referred to as R 1 and R 2 , exhibit pressure-sensitive changes to their spectral profiles, allowing 3D internal stresses to be recorded with spatial resolution of the order of a few micrometers.
RETRACTED ARTICLE: Evidence of near-ambient superconductivity in a N-doped lutetium hydride
The absence of electrical resistance exhibited by superconducting materials would have enormous potential for applications if it existed at ambient temperature and pressure conditions. Despite decades of intense research efforts, such a state has yet to be realized 1 , 2 . At ambient pressures, cuprates are the material class exhibiting superconductivity to the highest critical superconducting transition temperatures ( T c ), up to about 133 K (refs.  3 – 5 ). Over the past decade, high-pressure ‘chemical precompression’ 6 , 7 of hydrogen-dominant alloys has led the search for high-temperature superconductivity, with demonstrated T c approaching the freezing point of water in binary hydrides at megabar pressures 8 – 13 . Ternary hydrogen-rich compounds, such as carbonaceous sulfur hydride, offer an even larger chemical space to potentially improve the properties of superconducting hydrides 14 – 21 . Here we report evidence of superconductivity on a nitrogen-doped lutetium hydride with a maximum T c of 294 K at 10 kbar, that is, superconductivity at room temperature and near-ambient pressures. The compound was synthesized under high-pressure high-temperature conditions and then—after full recoverability—its material and superconducting properties were examined along compression pathways. These include temperature-dependent resistance with and without an applied magnetic field, the magnetization ( M ) versus magnetic field ( H ) curve, a.c. and d.c. magnetic susceptibility, as well as heat-capacity measurements. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and theoretical simulations provide some insight into the stoichiometry of the synthesized material. Nevertheless, further experiments and simulations are needed to determine the exact stoichiometry of hydrogen and nitrogen, and their respective atomistic positions, in a greater effort to further understand the superconducting state of the material. A nitrogen-doped lutetium hydride was synthesized under high-pressure high-temperature conditions and, following full recoverability, examination along compression pathways showed evidence of superconductivity at room temperature and near-ambient pressures.
Room-temperature superconductivity in a carbonaceous sulfur hydride
One of the long-standing challenges in experimental physics is the observation of room-temperature superconductivity . Recently, high-temperature conventional superconductivity in hydrogen-rich materials has been reported in several systems under high pressure . An  important discovery leading to room-temperature superconductivity is the pressure-driven disproportionation of hydrogen sulfide (H S) to H S, with a confirmed transition temperature of 203 kelvin at 155 gigapascals . Both H S and CH readily mix with hydrogen to form guest-host structures at lower pressures , and are of  comparable size at 4 gigapascals. By introducing methane at low pressures into the H S + H precursor mixture for H S, molecular exchange is allowed within a large assemblage of van der Waals solids that are hydrogen-rich with H inclusions; these guest-host structures become the building blocks of superconducting compounds at extreme conditions. Here we report superconductivity in a photochemically transformed carbonaceous sulfur hydride system, starting from elemental precursors, with a maximum superconducting transition temperature of 287.7 ± 1.2 kelvin (about 15 degrees Celsius) achieved at 267 ± 10 gigapascals. The superconducting state is observed over a broad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a sharp upturn in transition temperature above 220 gigapascals. Superconductivity is established by the observation of zero resistance, a magnetic susceptibility of up to 190 gigapascals, and reduction of the transition temperature under an external magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla according to the Ginzburg-Landau model at zero temperature. The light, quantum nature of hydrogen limits the structural and stoichiometric determination of the system by X-ray scattering techniques, but Raman spectroscopy is used to probe the chemical and structural transformations before metallization. The introduction of chemical tuning within our ternary system could enable the preservation of the properties of room-temperature superconductivity at lower pressures.
Evidence of near-ambient superconductivity in a N-doped lutetium hydride
The absence of electrical resistance exhibited by superconducting materials would have enormous potential for applications if it existed at ambient temperature and pressure conditions. Despite decades of intense research efforts, such a state has yet to be realized . At ambient pressures, cuprates are the material class exhibiting superconductivity to the highest critical superconducting transition temperatures (T ), up to about 133 K (refs.  ). Over the past decade, high-pressure 'chemical precompression' of hydrogen-dominant alloys has led the search for high-temperature superconductivity, with demonstrated T approaching the freezing point of water in binary hydrides at megabar pressures . Ternary hydrogen-rich compounds, such as carbonaceous sulfur hydride, offer an even larger chemical space to potentially improve the properties of superconducting hydrides . Here we report evidence of superconductivity on a nitrogen-doped lutetium hydride with a maximum T of 294 K at 10 kbar, that is, superconductivity at room temperature and near-ambient pressures. The compound was synthesized under high-pressure high-temperature conditions and then-after full recoverability-its material and superconducting properties were examined along compression pathways. These include temperature-dependent resistance with and without an applied magnetic field, the magnetization (M) versus magnetic field (H) curve, a.c. and d.c. magnetic susceptibility, as well as heat-capacity measurements. X-ray diffraction (XRD), energy-dispersive X-ray (EDX) and theoretical simulations provide some insight into the stoichiometry of the synthesized material. Nevertheless, further experiments and simulations are needed to determine the exact stoichiometry of hydrogen and nitrogen, and their respective atomistic positions, in a greater effort to further understand the superconducting state of the material.
Publisher Correction: Room-temperature superconductivity in a carbonaceous sulfur hydride
An amendment to this paper has been published and can be accessed via a link at the top of the paper.An amendment to this paper has been published and can be accessed via a link at the top of the paper.
RETRACTED ARTICLE: Room-temperature superconductivity in a carbonaceous sulfur hydride
One of the long-standing challenges in experimental physics is the observation of room-temperature superconductivity 1 , 2 . Recently, high-temperature conventional superconductivity in hydrogen-rich materials has been reported in several systems under high pressure 3 – 5 . An  important discovery leading to room-temperature superconductivity is the pressure-driven disproportionation of hydrogen sulfide (H 2 S) to H 3 S, with a confirmed transition temperature of 203 kelvin at 155 gigapascals 3 , 6 . Both H 2 S and CH 4 readily mix with hydrogen to form guest–host structures at lower pressures 7 , and are of  comparable size at 4 gigapascals. By introducing methane at low pressures into the H 2 S + H 2 precursor mixture for H 3 S, molecular exchange is allowed within a large assemblage of van der Waals solids that are hydrogen-rich with H 2 inclusions; these guest–host structures become the building blocks of superconducting compounds at extreme conditions. Here we report superconductivity in a photochemically transformed carbonaceous sulfur hydride system, starting from elemental precursors, with a maximum superconducting transition temperature of 287.7 ± 1.2 kelvin (about 15 degrees Celsius) achieved at 267 ± 10 gigapascals. The superconducting state is observed over a broad pressure range in the diamond anvil cell, from 140 to 275 gigapascals, with a sharp upturn in transition temperature above 220 gigapascals. Superconductivity is established by the observation of zero resistance, a magnetic susceptibility of up to 190 gigapascals, and reduction of the transition temperature under an external magnetic field of up to 9 tesla, with an upper critical magnetic field of about 62 tesla according to the Ginzburg–Landau model at zero temperature. The light, quantum nature of hydrogen limits the structural and stoichiometric determination of the system by X-ray scattering techniques, but Raman spectroscopy is used to probe the chemical and structural transformations before metallization. The introduction of chemical tuning within our ternary system could enable the preservation of the properties of room-temperature superconductivity at lower pressures. Room-temperature superconductivity is observed in a photochemically synthesized ternary carbonaceous sulfur hydride system at 15 °C and 267 GPa.
Second harmonic AC calorimetry technique within a diamond anvil cell
Tuning the energy density of matter at high pressures gives rise to exotic and often unprecedented properties, e.g., structural transitions, insulator-metal transitions, valence fluctuations, topological order, and the emergence of superconductivity. The study of specific heat has long been used to characterize these kinds of transitions, but their application to the diamond anvil cell (DAC) environment has proved challenging. Limited work has been done on the measurement of specific heat within DACs, in part due to the difficult experimental setup. To this end we have developed a novel method for the measurement of specific heat within a DAC that is independent of the DAC design and therefore readily compatible with any DACs already performing high pressure resistance measurements. As a proof-of-concept, specific heat measurements of the MgB2 superconductor were performed, showing a clear anomaly at the transition temperature (Tc), indicative of bulk superconductivity. This technique allows for specific heat measurements at higher pressure than previously possible.
Superconductivity to 262 kelvin via catalyzed hydrogenation of yttrium at high pressures
Room temperature superconductivity has been achieved under high pressure in an organically derived carbonaceous sulfur hydride with a critical superconducting transition temperature (Tc) of 288 kelvin. This development is part of a new class of dense, hydrogen rich materials with remarkably high critical temperatures. Metal superhydrides are a subclass of these materials that provide a different and potentially more promising route to very high Tc superconductivity. The most promising binary metal superhydrides contain alkaline or rare earth elements, and recent experimental observations of LaH10 have shown them capable of Tc s up to 250 to 260 kelvin. Predictions have shown yttrium superhydrides to be the most promising with an estimated Tc in excess of 300 kelvin for YH10. Here we report the synthesis of an yttrium superhydride that exhibits superconductivity at a critical temperature of 262 kelvin at 182 gigapascal. A palladium thin film assists the synthesis by protecting the sputtered yttrium from oxidation and promoting subsequent hydrogenation. Phonon mediated superconductivity is established by the observation of zero resistance, an isotope effect and the reduction of Tc under an external magnetic field. The upper critical magnetic field is 103 tesla at zero temperature. We suggest YH9 is the synthesized product based on comparison of the measured Raman spectra and Tc to calculated Raman results.