Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
3 result(s) for "Meichsner, Doreen"
Sort by:
A Poly(A) Ribonuclease Controls the Cellotriose-Based Interaction between Piriformospora indica and Its Host Arabidopsis
Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. P. indica fungal cell wall extract induces cytoplasmic calcium elevation in host plant roots. Here, we show that cellotriose (CT) is an elicitor-active cell wall moiety released by P. indica into the medium. CT induces a mild defense-like response, including the production of reactive oxygen species, changes in membrane potential, and the expression of genes involved in growth regulation and root development. CT-based cytoplasmic calcium elevation in Arabidopsis (Arabidopsis thaliana) roots does not require the BAK1 coreceptor or the putative Ca²⁺ channels TPC1, GLR3.3, GLR2.4, and GLR2.5 and operates synergistically with the elicitor chitin. We identified an ethyl methanesulfonate-induced mutant (cytoplasmic calcium elevation mutant) impaired in the response to CT and various other cellooligomers (n = 2–7), but not to chitooligomers (n = 4–8), in roots. The mutant contains a single nucleotide exchange in the gene encoding a poly(A) ribonuclease (AtPARN; At1g55870) that degrades the poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our identification of cellotriose as a novel chemical mediator casts light on the complex P. indica-plant mutualistic relationship.
Arabidopsis thaliana responds to colonisation of Piriformospora indica by secretion of symbiosis-specific proteins
Plants interact with a wide variety of fungi in a mutualistic, parasitic or neutral way. The associations formed depend on the exchange of nutrients and signalling molecules between the partners. This includes a diverse set of protein classes involved in defence, nutrient uptake or establishing a symbiotic relationship. Here, we have analysed the secretomes of the mutualistic, root-endophytic fungus Piriformospora indica and Arabidopsis thaliana when cultivated alone or in a co-culture. More than one hundred proteins were identified as differentially secreted, including proteins associated with growth, development, abiotic and biotic stress response and mucilage. While some of the proteins have been associated before to be involved in plant-microbial interaction, other proteins are newly described in this context. One plant protein found in the co-culture is PLAT1 (Polycystin, Lipoxygenase, Alpha-toxin and Triacylglycerol lipase). PLAT1 has not been associated with plant-fungal-interaction and is known to play a role in abiotic stress responses. In colonised roots PLAT1 shows an altered gene expression in a stage specific manner and plat1 knock-out plants are colonised stronger. It co-localises with Brassicaceae-specific endoplasmic reticulum bodies (ER-bodies) which are involved in the formation of the defence compound scopolin. We observed degraded ER-bodies in infected Arabidopsis roots and a change in the scopolin level in response to the presence of the fungus.
Barley yellow dwarf virus Infection Leads to Higher Chemical Defense Signals and Lower Electrophysiological Reactions in Susceptible Compared to Tolerant Barley Genotypes
(BYDV) is a phloem limited virus that is persistently transmitted by aphids. Due to huge yield losses in agriculture, the virus is of high economic relevance. Since the control of the virus itself is not possible, tolerant barley genotypes are considered as the most effective approach to avoid yield losses. Although several genes and quantitative trait loci are known and used in barley breeding for virus tolerance, little is known about molecular and physiological backgrounds of this trait. Therefore, we compared the anatomy and early defense responses of a virus susceptible to those of a virus-tolerant cultivar. One of the very early defense responses is the transmission of electrophysiological reactions. Electrophysiological reactions to BYDV infection might differ between susceptible and tolerant cultivars, since BYDV causes disintegration of sieve elements in susceptible cultivars. The structure of vascular bundles, xylem vessels and sieve elements was examined using microscopy. All three were significantly decreased in size in infected susceptible plants where the virus causes disintegration of sieve elements. This could be associated with an uncontrolled ion exchange between the sieve-element lumen and apoplast. Further, a reduced electrophysiological isolation would negatively affect the propagation of electrophysiological reactions. To test the influence of BYDV infection on electrophysiological reactions, electropotential waves (EPWs) induced by leaf-tip burning were recorded using aphids as bioelectrodes. EPWs in infected susceptible plants disappeared already after 10 cm in contrast to those in healthy susceptible or infected tolerant or healthy tolerant plants. Another early plant defense reaction is an increase in reactive oxygen species (ROS). Using a fluorescent dye, we found a significant increase in ROS content in infected susceptible plants but not in infected tolerant plants. Similar results were found for the phytohormones abscisic acid and three jasmonates. Salicylic acid levels were generally higher after BYDV infection compared to uninfected plants. Heat stimulation caused an increase in jasmonates. By shedding light on the plant defense mechanisms against BYDV, this study, provides further knowledge for breeding virus tolerant plants.