Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
41
result(s) for
"Miao, Fengqin"
Sort by:
Application of lipid nanovesicle drug delivery system in cancer immunotherapy
by
Shao, Guoliang
,
Zhang, Zhiyuan
,
Yu, Weiping
in
Analysis
,
Antimitotic agents
,
Antineoplastic agents
2022
Immunotherapy has gradually emerged as the most promising anticancer therapy. In addition to conventional anti-PD-1/PD-L1 therapy, anti-CTLA-4 therapy, CAR-T therapy, etc., immunotherapy can also be induced by stimulating the maturation of immune cells or inhibiting negative immune cells, regulating the tumor immune microenvironment and cancer vaccines. Lipid nanovesicle drug delivery system includes liposomes, cell membrane vesicles, bacterial outer membrane vesicles, extracellular vesicles and hybrid vesicles. Lipid nanovesicles can be used as functional vesicles for cancer immunotherapy, and can also be used as drug carriers to deliver immunotherapy drugs to the tumor site for cancer immunotherapy. Here, we review recent advances in five kinds of lipid nanovesicles in cancer immunotherapy and assess the clinical application prospects of various lipid nanovesicles, hoping to provide valuable information for clinical translation in the future.
Journal Article
Neuronal MHC Class I Expression Is Regulated by Activity Driven Calcium Signaling
2015
MHC class I (MHC-I) molecules are important components of the immune system. Recently MHC-I have been reported to also play important roles in brain development and synaptic plasticity. In this study, we examine the molecular mechanism(s) underlying activity-dependent MHC-I expression using hippocampal neurons. Here we report that neuronal expression level of MHC-I is dynamically regulated during hippocampal development after birth in vivo. Kainic acid (KA) treatment significantly increases the expression of MHC-I in cultured hippocampal neurons in vitro, suggesting that MHC-I expression is regulated by neuronal activity. In addition, KA stimulation decreased the expression of pre- and post-synaptic proteins. This down-regulation is prevented by addition of an MHC-I antibody to KA treated neurons. Further studies demonstrate that calcium-dependent protein kinase C (PKC) is important in relaying KA simulation activation signals to up-regulated MHC-I expression. This signaling cascade relies on activation of the MAPK pathway, which leads to increased phosphorylation of CREB and NF-κB p65 while also enhancing the expression of IRF-1. Together, these results suggest that expression of MHC-I in hippocampal neurons is driven by Ca2+ regulated activation of the MAPK signaling transduction cascade.
Journal Article
MiR34a Regulates Neuronal MHC Class I Molecules and Promotes Primary Hippocampal Neuron Dendritic Growth and Branching
by
Sun, Chen
,
Zhang, Jianqiong
,
Hu, Ying
in
3' Untranslated regions
,
Biotechnology industry
,
Cellular Neuroscience
2020
In the immune system, Major Histocompatibility Complex class Ⅰ (MHC-I) molecules are located on the surface of most nucleated cells in vertebrates where they mediate immune responses. Accumulating evidence indicates that MHC-I molecules are also expressed in the central nervous system (CNS) where they play important roles that are significantly different from their immune functions. Classical MHC-I molecules are temporally and spatially expressed in the developing and adult CNS, where they participate in synaptic formation, remodeling and plasticity. Therefore, clarifying the regulation of MHC-I expression is necessary to develop an accurate understanding of its function in the CNS. Here, we show that microRNA 34a (miR34a), a brain enriched noncoding RNA, is temporally expressed in developing hippocampal neurons, and its expression is significantly increased after MHC-I protein abundance is decreased in the hippocampus. Computational algorithms identify putative miR34a target sites in the 3’UTR of MHC-I mRNA, and here we demonstrate direct targeting of miR34a to MHC-I mRNA using a dual luciferase reporter assay system. MiR34a targeting can decrease constitutive MHC-I expression in both Neuro-2a neuroblastoma cells and primary hippocampal neurons. Finally, miR34a mediated reduction of MHC-I results in increased dendritic growth and branching in cultured hippocampal neurons. Taken together, our findings identify miR34a as a novel regulator of MHC-I for shaping neural morphology in developing hippocampal neurons.
Journal Article
KIR and HLA Loci Are Associated with Hepatocellular Carcinoma Development in Patients with Hepatitis B Virus Infection: A Case-Control Study
Natural killer (NK) cells activation has been reported to contribute to inflammation and liver injury during hepatitis B virus (HBV) infection both in transgenic mice and in patients. However, the role of NK cells in the process of HBV-associated hepatocellular carcinoma (HCC) development has not been addressed. Killer cell immunoglobulin-like receptors (KIRs) are involved in regulating NK cell activation through recognition of specific human leukocyte antigen (HLA) class I allotypes.
To investigate whether KIR and HLA genes could influence the risk of HBV-associated HCC development, 144 HBV-infected patients with HCC and 189 well-matched HBV infectors with chronic hepatitis or cirrhosis as non-HCC controls were enrolled in this study. The presence of 12 loci of KIR was detected individually. HLA-A, -B, -C loci were genotyped with high-resolution. HLA-C group 1 homozygote (OR = 2.02; p = 0.005), HLA-Bw4-80I (OR = 2.67; p = 2.0E-04) and combination of full-length form and 22 bp-deleted form of KIR2DS4 (KIR2DS4/1D) (OR = 1.89; p = 0.017) were found associated with HCC incidence. When the combined effects of these three genetic factors were evaluated, more risk factors were observed correlating with higher odds ratios for HCC incidence (P trend = 7.4E-05). Because all the risk factors we found have been reported to result in high NK cell functional potential by previous studies, our observations suggest that NK cell activation may contribute to HBV-associated HCC development.
In conclusion, this study has identified significant associations that suggest an important role for NK cells in HCC incidence in HBV-infected patients. Our study is useful for HCC surveillance and has implications for novel personalized therapy strategy development aiming at HCC prevention in HBV-infected patients.
Journal Article
Developmental expression and localization of MHC class I molecules in the human central nervous system
Recent animal studies have found neuronal expression of major histocompatibility complex (MHC) class I in the central nervous system (CNS). However, the developmental expression profiles of MHC class I in human CNS remain unclear. Here, we systemically evaluate the expression and subcellular localization of MHC class I molecules during human CNS development using immunohistochemistry and immunofluorescence. Between the age of 20–33 gestational weeks (GW), MHC class I expression was relatively absent in the cerebral cortex with the exception of a few neurons; however, expression increased rapidly in the cochlear nuclei and in the cerebellar cortical Purkinje cells while increasing slowly in the substantia nigra. Expression was also detected in some nuclei and nerve fibers of the brain stem including the ambiguus nucleus, the locus coeruleus and the solitary tract as early as 20 GW and persisted through 33 GW. These early-stage neural cells with MHC class I protein expression later developed neuronal morphology. 30–33 GW is an important period of MHC class I expression in neurons, and during this period, MHC class I molecules were found to be enriched not only in neuronal cell bodies and neurites but also in nerve fibers and in the surrounding stroma. No expression was detected in the adult brain with exception of the cerebrovascular endothelium. MHC class I molecules displayed greater postsynaptic colocalization in cerebellar Purkinje cells, in the lateral geniculate nucleus and in the cochlear nuclei. These results demonstrate diverse spatiotemporal expression patterns for MHC class I molecules in the prenatal human CNS and strongly support the notion that MHC class I molecules play important roles in both CNS development and plasticity.
Journal Article
Modulation of the gamma-secretase activity as a therapy against human hepatocellular carcinoma
by
Lv, Dan
,
Zhang, Jianqiong
,
Miao, Fengqin
in
Adult
,
Amyloid Precursor Protein Secretases - genetics
,
Amyloid Precursor Protein Secretases - metabolism
2018
Objective: Hepatocellular carcinoma (HCC) is the fifth most common tumor worldwide. The discovery of new therapies against HCC is highly dependable on finding molecules which play essential roles in cancer development. The objective of this study was to evaluate the activity of gamma secretase (γ-secretase), and the antitumor effects of a γ-secretase inhibitor (GSI) in HCC.
Methods: The expression of presenilin 1 (PS1), a core component of γ-secretase, was examined by Western blot. Activity of γ-secretase was measured by a luciferase-based reporter system, and cancer cells were transfected either with PS1 dominant negative mutant (PS1D385A) or treated with GSI.
Results: Expression of PS1 was increased in HCC tissue and several HCC cell lines, which were accompanied by elevated γ-secretase activity. Cell colony formation and cell proliferation were decreased upon treatment with GSI but not with PS1D385A transfection.
Conclusion: GSIs may be appealing candidates for the development of new therapies against HCC.
Journal Article
The Expression Patterns of MHC Class I Molecules in the Developmental Human Visual System
2013
It has been considered that healthy neurons in central nervous system (CNS) do not express major histocompatibility complex (MHC) class I molecules. However, recent studies clearly demonstrated the expression of functional MHC class I in the mammalian embryonic, neonatal and adult brain. Until now, it is still unknown whether MHC I molecules are expressed in the development of human brain. We collected nine human brain tissues from fetuses aged from 21 to 31 gestational weeks (GW), one newborn of postnatal 55 days and one adult. The expression of MHC class I molecules was detected during the development of visual system in human brain by immunohistochemistry and immunofluorescence. MHC class I proteins were located at lateral geniculate nucleus (LGN) and the expression was gradually increased from 21 GW to 31 GW and reached high levels at 30–31 GW when fine-scale refinement phase was mediated by neural electric activity. However, there was no expression of MHC class I molecules in the visual cortical cortex during all the developmental stages examined. We also concluded that MHC class I molecules were mainly expressed in neurons but not in astrocytes at LGN. In the developing visual system, the expression of β2M protein on neurons was not found in our study.
Journal Article
NLRC5 Deficiency Reduces LPS-Induced Microglial Activation via Inhibition of NF-κB Signaling and Ameliorates Mice’s Depressive-like Behavior
2023
Microglia are believed to be the key immune effectors of the central immune microenvironment, and their dysregulation is associated with neuroinflammation and mood disorders. Nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain-containing five (NLRC5) is a new member of the Nod-like receptor family. Recently, NLRC5 has been reported to be expressed by microglia. Nonetheless, the exact roles of NLRC5 in microglial activation and its function in depression have not been investigated yet. Herein, we found that reducing NLRC5 decreased lipopolysaccharide (LPS)-induced secretion of pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in primary cultured microglia and microglial cell lines but not in bone marrow-derived macrophages (BMDMs). In more detail, reducing NLRC5 diminished the secretion of LPS-induced cytokines by attenuating IKKα/β phosphorylation and inhibiting NF-κB signaling. Moreover, the expression of Nlrc5 in the hippocampus of LPS- or chronic unpredictable mild stress (CUMS)-induced depressive mice was increased. In line with the in vitro findings, Nlrc5 deficiency inhibited microglial activation in the mouse hippocampus and improved LPS- or CUMS-induced depressive-like behaviors. In summary, we demonstrated the critical role of NLRC5 in LPS-induced microglial activation and LPS- or CUMS-induced depressive mouse models.
Journal Article
Combination of Human Leukocyte Antigen and Killer Cell Immunoglobulin-Like Receptor Genetic Background Influences the Onset Age of Hepatocellular Carcinoma in Male Patients with Hepatitis B Virus Infection
by
He, Youji
,
Zhang, Jianqiong
,
Sun, Hang
in
Autoimmune diseases
,
Genotype & phenotype
,
Hepatitis delta virus
2013
To investigate whether killer cell immunoglobulin-like receptor (KIR) and human leukocyte antigen (HLA) genetic background could influence the onset age of hepatocellular carcinoma (HCC) in patients with hepatitis B virus (HBV) infection, one hundred and seventy-one males with HBV-related HCC were enrolled. The presence of 12 loci of KIR was detected individually. HLA-A, -B, and -C loci were genotyped with high resolution by a routine sequence-based typing method. The effect of each KIR locus, HLA ligand, and HLA-KIR combination was examined individually by Kaplan-Meier (KM) analysis. Multivariate Cox hazard regression model was also applied. We identified C1C1-KIR2DS2/2DL2 as an independent risk factor for earlier onset age of HCC (median onset age was 44 for C1C1-KIR2DS2/2DL2 positive patients compared to 50 for negative patients, P=0.04 for KM analysis; HR = 1.70, P=0.004 for multivariate Cox model). We conclude that KIR and HLA genetic background can influence the onset age of HCC in male patients with HBV infection. This study may be useful to improve the current HCC surveillance program in HBV-infected patients. Our findings also suggest an important role of natural killer cells (or other KIR-expressing cells) in the progress of HBV-related HCC development.
Journal Article
Association of Human Leukocyte Antigen Class I Polymorphism with Spontaneous Clearance of Hepatitis B Surface Antigen in Qidong Han Population
by
Zhang, Jianqiong
,
Sun, Hang
,
Qiu, Jie
in
Genetic testing
,
Hepatitis
,
Human immunodeficiency virus
2013
Aim. To investigate whether HLA class I polymorphisms could influence the clearance of hepatitis B surface antigen (HBsAg) in Qidong Han population. Methods. We genotyped HLA-A, -B, and -C loci of 448 individuals with HBV persistent infection and 140 persons with spontaneous clearance of HBsAg by polymerase chain reaction with sequencing based typing (PCR/SBT). All the individuals were unrelated males enrolled from Qidong Han population and were followed up for 10 years. Results. The frequency of HLA-A*33:03:01G was increased in persistent HBV infection group (P value is 0.028), while frequency of HLA-B*13:01:01G was increased in HBsAg clearance group (P value is 0.0004). Conclusion. These findings suggested that the host HLA class I polymorphism is an important factor in determining the outcomes of HBV infection.
Journal Article