Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
3,467 result(s) for "Millar, John S."
Sort by:
The Corporate Determinants of Health: How Big Business Affects Our Health, and the Need for Government Action
Corporations have a great effect on the health of Canadians. Good companies create jobs, sell valued products at market value, pay a living wage, empower employees, have progressive human resource policies (parental, mental health leaves, workplace wellness programs, day care), and pay their appropriate corporate taxes. They embrace corporate social responsibility and some have a triple bottom line – people, planet and profits. More good corporations are needed. But others are selling products that are damaging to health and the environment, at prices that do not account for these damaging effects and often target consumers that are ill-informed and susceptible (e.g., children). These include businesses involving tobacco, alcohol, drugs, junk foods and beverages, resource extraction, arms production and the electronic media. Governments have a responsibility to take action when the market mechanism fails in this way. A priority for action is the food and beverage sector. The overconsumption of sugar, fat and salt is causing a rising prevalence of all the major chronic diseases, rising health care costs and declining population health and productivity. Urgent government action is required: taxation, advertising and sales restrictions, and a salt reduction program.
Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome
Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants. Gut bacteria are prevalent across insects including ants, but their precise roles are often unclear. Here, Hu et al. show that microbes aid ants by recycling nitrogen into bio-available amino acids. This function is conserved across the turtle ants, suggesting an ancient nutritional mutualism.
Endothelial lipase mediates efficient lipolysis of triglyceride-rich lipoproteins
Triglyceride-rich lipoproteins (TRLs) are circulating reservoirs of fatty acids used as vital energy sources for peripheral tissues. Lipoprotein lipase (LPL) is a predominant enzyme mediating triglyceride (TG) lipolysis and TRL clearance to provide fatty acids to tissues in animals. Physiological and human genetic evidence support a primary role for LPL in hydrolyzing TRL TGs. We hypothesized that endothelial lipase (EL), another extracellular lipase that primarily hydrolyzes lipoprotein phospholipids may also contribute to TRL metabolism. To explore this, we studied the impact of genetic EL loss-of-function on TRL metabolism in humans and mice. Humans carrying a loss-of-function missense variant in LIPG , p.Asn396Ser (rs77960347), demonstrated elevated plasma TGs and elevated phospholipids in TRLs, among other lipoprotein classes. Mice with germline EL deficiency challenged with excess dietary TG through refeeding or a high-fat diet exhibited elevated TGs, delayed dietary TRL clearance, and impaired TRL TG lipolysis in vivo that was rescued by EL reconstitution in the liver. Lipidomic analyses of postprandial plasma from high-fat fed Lipg -/- mice demonstrated accumulation of phospholipids and TGs harboring long-chain polyunsaturated fatty acids (PUFAs), known substrates for EL lipolysis. In vitro and in vivo , EL and LPL together promoted greater TG lipolysis than either extracellular lipase alone. Our data positions EL as a key collaborator of LPL to mediate efficient lipolysis of TRLs in humans and mice.
Restitution of mass-size residuals: validating body condition indices
Body condition can have important fitness consequences, but measuring body condition of live animals from wild populations has been the subject of much recent debate. Using the residuals from a regression of body mass on a linear measure of body size is one of the most common methods of measuring condition and has been used in many vertebrate taxa. Recently, the use of this method has been criticized because assumptions are likely violated. We tested several assumptions regarding the use of this method with body composition and morphometric data from five species of small mammals and with statistical simulations. We tested the assumptions that the relationship between body mass and body size is linear, and that the proportion of mass associated with energy reserves is independent of body size. In addition, we tested whether the residuals from reduced major axis (RMA) regression or major axis (MA) regression performed better than the residuals from ordinary least squares (OLS) regression as indices of body condition. We found no evidence of nonlinear relationships between body mass and body size. Relative energy reserves (fat and lean dry mass) were generally independent or weakly dependent on body size. Residuals from MA and RMA regression consistently explained less variation in body composition than OLS regression. Using statistical simulations, we compared the effects of violations of the assumption that true condition and residual indices are independent of body size on the OLS, MA, and RMA procedures and found that OLS performed better than the RMA and MA procedures. Despite recent criticisms of residuals from mass-size OLS regressions, these indices of body condition appear to satisfy critical assumptions. Although some caution is warranted when using residuals, especially when both inter-individual variation in body size and measurement error are high, we found no reason to reject OLS residuals as legitimate indices of body condition.
A human APOC3 missense variant and monoclonal antibody accelerate apoC-III clearance and lower triglyceride-rich lipoprotein levels
On the basis of new mechanistic studies of a mutant form of the apolipoprotein apoC-III that protects against coronary heart disease, Khetarpal et al. have developed therapeutic apoC-III-targeting monoclonal antibodies that lower circulating apoC-III protein and triglyceride levels in mice. Recent large-scale genetic sequencing efforts have identified rare coding variants in genes in the triglyceride-rich lipoprotein (TRL) clearance pathway that are protective against coronary heart disease (CHD), independently of LDL cholesterol (LDL-C) levels 1 . Insight into the mechanisms of protection of these variants may facilitate the development of new therapies for lowering TRL levels. The gene APOC3 encodes apoC-III, a critical inhibitor of triglyceride (TG) lipolysis and remnant TRL clearance 2 . Here we report a detailed interrogation of the mechanism of TRL lowering by the APOC3 Ala43Thr (A43T) variant, the only missense (rather than protein-truncating) variant in APOC3 reported to be TG lowering and protective against CHD 3 , 4 , 5 . We found that both human APOC3 A43T heterozygotes and mice expressing human APOC3 A43T display markedly reduced circulating apoC-III levels. In mice, this reduction is due to impaired binding of A43T apoC-III to lipoproteins and accelerated renal catabolism of free apoC-III. Moreover, the reduced content of apoC-III in TRLs resulted in accelerated clearance of circulating TRLs. On the basis of this protective mechanism, we developed a monoclonal antibody targeting lipoprotein-bound human apoC-III that promotes circulating apoC-III clearance in mice expressing human APOC3 and enhances TRL catabolism in vivo . These data reveal the molecular mechanism by which a missense variant in APOC3 causes reduced circulating TG levels and, hence, protects from CHD. This protective mechanism has the potential to be exploited as a new therapeutic approach to reduce apoC-III levels and circulating TRL burden.
Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism
Genome-wide association studies (GWAS) have identified a genetic variant at a locus on chromosome 1p13 that is associated with reduced risk of myocardial infarction, reduced plasma levels of LDL cholesterol (LDL-C), and markedly increased expression of the gene sortilin-1 (SORT1) in liver. Sortilin is a lysosomal sorting protein that binds ligands both in the Golgi apparatus and at the plasma membrane and traffics them to the lysosome. We previously reported that increased hepatic sortilin expression in mice reduced plasma LDL-C levels. Here we show that increased hepatic sortilin not only reduced hepatic apolipoprotein B (APOB) secretion, but also increased LDL catabolism, and that both effects were dependent on intact lysosomal targeting. Loss-of-function studies demonstrated that sortilin serves as a bona fide receptor for LDL in vivo in mice. Our data are consistent with a model in which increased hepatic sortilin binds intracellular APOB-containing particles in the Golgi apparatus as well as extracellular LDL at the plasma membrane and traffics them to the lysosome for degradation. We thus provide functional evidence that genetically increased hepatic sortilin expression both reduces hepatic APOB secretion and increases LDL catabolism, providing dual mechanisms for the very strong association between increased hepatic sortilin expression and reduced plasma LDL-C levels in humans.
Inhibition of Microsomal Triglyceride Transfer Protein in Familial Hypercholesterolemia
Homozygous familial hypercholesterolemia is a serious disorder resulting in early-onset vascular disease. This preliminary study explored a new therapy, an inhibitor of microsomal triglyceride transfer protein, which was very effective in lowering low-density lipoprotein cholesterol levels. Practical application of this therapy may be limited, however, by substantial accumulation of hepatic fat and elevation of liver aminotransferase levels. This preliminary study explored a new therapy, an inhibitor of microsomal triglyceride transfer protein, which was very effective in lowering low-density lipoprotein cholesterol levels. Homozygous familial hypercholesterolemia is caused by loss-of-function mutations in both alleles of the low-density lipoprotein (LDL) receptor gene. 1 – 3 Patients with the disease have plasma cholesterol levels of more than 500 mg per deciliter (12.9 mmol per liter); if untreated, patients have cardiovascular disease before 20 years of age and generally do not survive past 30 years of age. 1 – 3 Patients with homozygous familial hypercholesterolemia also have a poor response to conventional drug therapy, 1 – 3 which generally lowers LDL cholesterol levels through up-regulation of the hepatic LDL receptor. The current standard of care for these patients is LDL apheresis. This . . .
Indirect and mitigated effects of pulsed resources on the population dynamics of a northern rodent
1. Pulsed resources have significant effects on population and community dynamics in terrestrial ecosystems. Mast seeding is an important resource pulse in deciduous forests; these boom and bust cycles of seed production generate strong lagged population responses by post-dispersal seed predators such as rodents, which then cascade through multiple trophic levels and regulate population dynamics of their predators and prey. However, similar interactions in another major pulsed system, coniferous forests, are inconsistent, and the effects of interannual variation in conifer seed production on many consumer populations are largely unknown. 2. We used large-scale manipulation and intensive monitoring to examine the population dynamics of deer mice (Peromyscus maniculatus) in relation to fall seed production by two northern conifers, white spruce (Picea glauca) and subalpine fir (Abies lasiocarpa). Previous studies have shown that spruce seeds are a preferred food source of mice, while fir seeds are generally avoided if other foods are available. Therefore, we expected that there would be a positive relationship between mouse demography and previous spruce seed production, but no effect of fir mast seeding. 3. Supplementation of a mouse population using spruce seeds indicated that increased fall spruce seed availability can enhance overwinter survival and population densities in the following spring, summer, and fall. However, long-term population monitoring indicated that mouse demography was not positively affected by spruce mast seeding, likely due to strong interspecific competition with the North American red squirrel (Tamiasciurus hudoniscus), a dominant pre-dispersal spruce seed predator. 4. Conversely, we observed an unexpected delayed effect of fir mast seeding, where increased fall fir seed production did not influence overwinter or spring mouse demography, but instead enhanced summer survival, body masses and pregnancy rates of overwintered adults. This led to increased summer population densities and may have been mediated by population responses of invertebrate post-dispersal seed predators to increased fir seed availability. 5. Our results indicate that rodent responses to resource pulses in coniferous forests are more complex than in deciduous environments and reveal previously unobserved direct and indirect consumer–resource dynamics that require further examination. This system is ideal for the large-scale, integrative ecosystem studies that ecologists are encouraged to pursue.
Assessing HDL Metabolism in Subjects with Elevated Levels of HDL Cholesterol and Coronary Artery Disease
High-density lipoprotein cholesterol (HDL-C) is thought to be atheroprotective yet some patients with elevated HDL-C levels develop cardiovascular disease, possibly due to the presence of dysfunctional HDL. We aimed to assess the metabolic fate of circulating HDL particles in patients with high HDL-C with and without coronary artery disease (CAD) using in vivo dual labeling of its cholesterol and protein moieties. We measured HDL apolipoprotein (apo) A-I, apoA-II, free cholesterol (FC), and cholesteryl ester (CE) kinetics using stable isotope-labeled tracers (D3-leucine and 13C2-acetate) as well as ex vivo cholesterol efflux to HDL in subjects with (n = 6) and without (n = 6) CAD that had HDL-C levels >90th percentile. Healthy controls with HDL-C within the normal range (n = 6) who underwent the same procedures were used as the reference. Subjects with high HDL-C with and without CAD had similar plasma lipid levels and similar apoA-I, apoA-II, HDL FC, and CE pool sizes with no significant differences in fractional clearance rates (FCRs) or production rates (PRs) of these components between groups. Subjects with high HDL-C with and without CAD also had similar basal and cAMP-stimulated ex vivo cholesterol efflux to HDL. When all subjects were considered (n = 18), unstimulated non-ABCA1-mediated efflux (but not ABCA1-specific efflux) was correlated positively with apoA-I production (r = 0.552, p = 0.017) and HDL FC and CE pool sizes, and negatively with the fractional clearance rate of FC (r = −0.759, p = 4.1 × 10−4) and CE (r = −0.652, p = 4.57 × 10−3). Our data are consistent with the concept that ex vivo non-ABCA1 efflux capacity may correlate with slower in vivo turnover of HDL cholesterol moieties. The use of a dual labeling protocol provided for the first time the opportunity to assess the association of ex vivo cholesterol efflux capacity with in vivo HDL cholesterol metabolic parameters.
Anacetrapib lowers LDL by increasing ApoB clearance in mildly hypercholesterolemic subjects
Individuals treated with the cholesteryl ester transfer protein (CETP) inhibitor anacetrapib exhibit a reduction in both LDL cholesterol and apolipoprotein B (ApoB) in response to monotherapy or combination therapy with a statin. It is not clear how anacetrapib exerts these effects; therefore, the goal of this study was to determine the kinetic mechanism responsible for the reduction in LDL and ApoB in response to anacetrapib. We performed a trial of the effects of anacetrapib on ApoB kinetics. Mildly hypercholesterolemic subjects were randomized to background treatment of either placebo (n = 10) or 20 mg atorvastatin (ATV) (n = 29) for 4 weeks. All subjects then added 100 mg anacetrapib to background treatment for 8 weeks. Following each study period, subjects underwent a metabolic study to determine the LDL-ApoB-100 and proprotein convertase subtilisin/kexin type 9 (PCSK9) production rate (PR) and fractional catabolic rate (FCR). Anacetrapib markedly reduced the LDL-ApoB-100 pool size (PS) in both the placebo and ATV groups. These changes in PS resulted from substantial increases in LDL-ApoB-100 FCRs in both groups. Anacetrapib had no effect on LDL-ApoB-100 PRs in either treatment group. Moreover, there were no changes in the PCSK9 PS, FCR, or PR in either group. Anacetrapib treatment was associated with considerable increases in the LDL triglyceride/cholesterol ratio and LDL size by NMR. These data indicate that anacetrapib, given alone or in combination with a statin, reduces LDL-ApoB-100 levels by increasing the rate of ApoB-100 fractional clearance. ClinicalTrials.gov NCT00990808. Merck & Co. Inc., Kenilworth, New Jersey, USA. Additional support for instrumentation was obtained from the National Center for Advancing Translational Sciences (UL1TR000003 and UL1TR000040).