Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
53 result(s) for "Moore, Katrina M"
Sort by:
Tau-targeting antisense oligonucleotide MAPTRx in mild Alzheimer’s disease: a phase 1b, randomized, placebo-controlled trial
Tau plays a key role in Alzheimer’s disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPT Rx ) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPT Rx . Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPT Rx or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPT Rx pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPT Rx and 12 to placebo. Adverse events were reported in 94% of MAPT Rx -treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPT Rx -treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPT Rx groups. Clinicaltrials.gov registration number: NCT03186989 . Evaluation of a tau-targeting antisense oligonucleotide in a phase 1 trial of patients with mild AD found it was well tolerated and resulted in a sustained reduction of tau protein levels.
Abnormal pain perception is associated with thalamo-cortico-striatal atrophy in C9orf72 expansion carriers in the GENFI cohort
ObjectiveFrontotemporal dementia (FTD) is typically associated with changes in behaviour, language and movement. However, recent studies have shown that patients can also develop an abnormal response to pain, either heightened or diminished. We aimed to investigate this symptom in mutation carriers within the Genetic FTD Initiative (GENFI).MethodsAbnormal responsiveness to pain was measured in 462 GENFI participants: 281 mutation carriers and 181 mutation-negative controls. Changes in responsiveness to pain were scored as absent (0), questionable or very mild (0.5), mild (1), moderate (2) or severe (3). Mutation carriers were classified into C9orf72 (104), GRN (128) and MAPT (49) groups, and into presymptomatic and symptomatic stages. An ordinal logistic regression model was used to compare groups, adjusting for age and sex. Voxel-based morphometry was performed to identify neuroanatomical correlates of abnormal pain perception.ResultsAltered responsiveness to pain was present to a significantly greater extent in symptomatic C9orf72 expansion carriers than in controls: mean score 0.40 (SD 0.71) vs 0.00 (0.04), reported in 29% vs 1%. No significant differences were seen between the other symptomatic groups and controls, or any of the presymptomatic mutation carriers and controls. Neural correlates of altered pain perception in C9orf72 expansion carriers were the bilateral thalamus and striatum as well as a predominantly right-sided network of regions involving the orbitofrontal cortex, inferomedial temporal lobe and cerebellum.ConclusionChanges in pain perception are a feature of C9orf72 expansion carriers, likely representing a disruption in somatosensory, homeostatic and semantic processing, underpinned by atrophy in a thalamo-cortico-striatal network.
Age at symptom onset and death and disease duration in genetic frontotemporal dementia: an international retrospective cohort study
Frontotemporal dementia is a heterogenous neurodegenerative disorder, with about a third of cases being genetic. Most of this genetic component is accounted for by mutations in GRN, MAPT, and C9orf72. In this study, we aimed to complement previous phenotypic studies by doing an international study of age at symptom onset, age at death, and disease duration in individuals with mutations in GRN, MAPT, and C9orf72. In this international, retrospective cohort study, we collected data on age at symptom onset, age at death, and disease duration for patients with pathogenic mutations in the GRN and MAPT genes and pathological expansions in the C9orf72 gene through the Frontotemporal Dementia Prevention Initiative and from published papers. We used mixed effects models to explore differences in age at onset, age at death, and disease duration between genetic groups and individual mutations. We also assessed correlations between the age at onset and at death of each individual and the age at onset and at death of their parents and the mean age at onset and at death of their family members. Lastly, we used mixed effects models to investigate the extent to which variability in age at onset and at death could be accounted for by family membership and the specific mutation carried. Data were available from 3403 individuals from 1492 families: 1433 with C9orf72 expansions (755 families), 1179 with GRN mutations (483 families, 130 different mutations), and 791 with MAPT mutations (254 families, 67 different mutations). Mean age at symptom onset and at death was 49·5 years (SD 10·0; onset) and 58·5 years (11·3; death) in the MAPT group, 58·2 years (9·8; onset) and 65·3 years (10·9; death) in the C9orf72 group, and 61·3 years (8·8; onset) and 68·8 years (9·7; death) in the GRN group. Mean disease duration was 6·4 years (SD 4·9) in the C9orf72 group, 7·1 years (3·9) in the GRN group, and 9·3 years (6·4) in the MAPT group. Individual age at onset and at death was significantly correlated with both parental age at onset and at death and with mean family age at onset and at death in all three groups, with a stronger correlation observed in the MAPT group (r=0·45 between individual and parental age at onset, r=0·63 between individual and mean family age at onset, r=0·58 between individual and parental age at death, and r=0·69 between individual and mean family age at death) than in either the C9orf72 group (r=0·32 individual and parental age at onset, r=0·36 individual and mean family age at onset, r=0·38 individual and parental age at death, and r=0·40 individual and mean family age at death) or the GRN group (r=0·22 individual and parental age at onset, r=0·18 individual and mean family age at onset, r=0·22 individual and parental age at death, and r=0·32 individual and mean family age at death). Modelling showed that the variability in age at onset and at death in the MAPT group was explained partly by the specific mutation (48%, 95% CI 35–62, for age at onset; 61%, 47–73, for age at death), and even more by family membership (66%, 56–75, for age at onset; 74%, 65–82, for age at death). In the GRN group, only 2% (0–10) of the variability of age at onset and 9% (3–21) of that of age of death was explained by the specific mutation, whereas 14% (9–22) of the variability of age at onset and 20% (12–30) of that of age at death was explained by family membership. In the C9orf72 group, family membership explained 17% (11–26) of the variability of age at onset and 19% (12–29) of that of age at death. Our study showed that age at symptom onset and at death of people with genetic frontotemporal dementia is influenced by genetic group and, particularly for MAPT mutations, by the specific mutation carried and by family membership. Although estimation of age at onset will be an important factor in future pre-symptomatic therapeutic trials for all three genetic groups, our study suggests that data from other members of the family will be particularly helpful only for individuals with MAPT mutations. Further work in identifying both genetic and environmental factors that modify phenotype in all groups will be important to improve such estimates. UK Medical Research Council, National Institute for Health Research, and Alzheimer's Society.
Tau-targeting antisense oligonucleotide MAPT Rx in mild Alzheimer's disease: a phase 1b, randomized, placebo-controlled trial
Tau plays a key role in Alzheimer's disease (AD) pathophysiology, and accumulating evidence suggests that lowering tau may reduce this pathology. We sought to inhibit MAPT expression with a tau-targeting antisense oligonucleotide (MAPT ) and reduce tau levels in patients with mild AD. A randomized, double-blind, placebo-controlled, multiple-ascending dose phase 1b trial evaluated the safety, pharmacokinetics and target engagement of MAPT . Four ascending dose cohorts were enrolled sequentially and randomized 3:1 to intrathecal bolus administrations of MAPT or placebo every 4 or 12 weeks during the 13-week treatment period, followed by a 23 week post-treatment period. The primary endpoint was safety. The secondary endpoint was MAPT pharmacokinetics in cerebrospinal fluid (CSF). The prespecified key exploratory outcome was CSF total-tau protein concentration. Forty-six patients enrolled in the trial, of whom 34 were randomized to MAPT and 12 to placebo. Adverse events were reported in 94% of MAPT -treated patients and 75% of placebo-treated patients; all were mild or moderate. No serious adverse events were reported in MAPT -treated patients. Dose-dependent reduction in the CSF total-tau concentration was observed with greater than 50% mean reduction from baseline at 24 weeks post-last dose in the 60 mg (four doses) and 115 mg (two doses) MAPT groups. Clinicaltrials.gov registration number: NCT03186989 .
MRI data-driven algorithm for the diagnosis of behavioural variant frontotemporal dementia
IntroductionStructural brain imaging is paramount for the diagnosis of behavioural variant of frontotemporal dementia (bvFTD), but it has low sensitivity leading to erroneous or late diagnosis.MethodsA total of 515 subjects from two different bvFTD cohorts (training and independent validation cohorts) were used to perform voxel-wise morphometric analysis to identify regions with significant differences between bvFTD and controls. A random forest classifier was used to individually predict bvFTD from deformation-based morphometry differences in isolation and together with semantic fluency. Tenfold cross validation was used to assess the performance of the classifier within the training cohort. A second held-out cohort of genetically confirmed bvFTD cases was used for additional validation.ResultsAverage 10-fold cross-validation accuracy was 89% (82% sensitivity, 93% specificity) using only MRI and 94% (89% sensitivity, 98% specificity) with the addition of semantic fluency. In the separate validation cohort of definite bvFTD, accuracy was 88% (81% sensitivity, 92% specificity) with MRI and 91% (79% sensitivity, 96% specificity) with added semantic fluency scores.ConclusionOur results show that structural MRI and semantic fluency can accurately predict bvFTD at the individual subject level within a completely independent validation cohort coming from a different and independent database.
Data‐driven staging of genetic frontotemporal dementia using multi‐modal MRI
Frontotemporal dementia in genetic forms is highly heterogeneous and begins many years to prior symptom onset, complicating disease understanding and treatment development. Unifying methods to stage the disease during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. Here we used the contrastive trajectory inference (cTI), an unsupervised machine learning algorithm that analyzes temporal patterns in high‐dimensional large‐scale population datasets to obtain individual scores of disease stage. We used cross‐sectional MRI data (gray matter density, T1/T2 ratio as a proxy for myelin content, resting‐state functional amplitude, gray matter fractional anisotropy, and mean diffusivity) from 383 gene carriers (269 presymptomatic and 115 symptomatic) and a control group of 253 noncarriers in the Genetic Frontotemporal Dementia Initiative. We compared the cTI‐obtained disease scores to the estimated years to onset (age—mean age of onset in relatives), clinical, and neuropsychological test scores. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. Mean cTI scores were higher in the presymptomatic carriers than controls, indicating that the method may capture subtle pre‐dementia cerebral changes, although this change was not replicated in a subset of subjects with complete data. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics. Unifying methods to stage genetic frontotemporal dementia during both the presymptomatic and symptomatic phases are needed for the development of clinical trials outcomes. We applied an unsupervised machine learning algorithm [the contrastive trajectory inference (cTI)] to multi‐modal MRI from presymptomatic and symptomatic carriers of FTD‐causing mutations to obtain individual scores of disease stage. The cTI based disease scores were correlated with all clinical and neuropsychological tests (measuring behavioral symptoms, attention, memory, language, and executive functions), with the highest contribution coming from mean diffusivity. This study provides a proof of concept that cTI can identify data‐driven disease stages in a heterogeneous sample combining different mutations and disease stages of genetic FTD using only MRI metrics.
Cognitive composites for genetic frontotemporal dementia: GENFI-Cog
Background Clinical endpoints for upcoming therapeutic trials in frontotemporal dementia (FTD) are increasingly urgent. Cognitive composite scores are often used as endpoints but are lacking in genetic FTD. We aimed to create cognitive composite scores for genetic frontotemporal dementia (FTD) as well as recommendations for recruitment and duration in clinical trial design. Methods A standardized neuropsychological test battery covering six cognitive domains was completed by 69 C9orf72 , 41 GRN , and 28 MAPT mutation carriers with CDR® plus NACC-FTLD ≥ 0.5 and 275 controls. Logistic regression was used to identify the combination of tests that distinguished best between each mutation carrier group and controls. The composite scores were calculated from the weighted averages of test scores in the models based on the regression coefficients. Sample size estimates were calculated for individual cognitive tests and composites in a theoretical trial aimed at preventing progression from a prodromal stage (CDR® plus NACC-FTLD 0.5) to a fully symptomatic stage (CDR® plus NACC-FTLD ≥ 1). Time-to-event analysis was performed to determine how quickly mutation carriers progressed from CDR® plus NACC-FTLD = 0.5 to ≥ 1 (and therefore how long a trial would need to be). Results The results from the logistic regression analyses resulted in different composite scores for each mutation carrier group (i.e. C9orf72 , GRN , and MAPT ). The estimated sample size to detect a treatment effect was lower for composite scores than for most individual tests. A Kaplan-Meier curve showed that after 3 years, ~ 50% of individuals had converted from CDR® plus NACC-FTLD 0.5 to ≥ 1, which means that the estimated effect size needs to be halved in sample size calculations as only half of the mutation carriers would be expected to progress from CDR® plus NACC FTLD 0.5 to ≥ 1 without treatment over that time period. Discussion We created gene-specific cognitive composite scores for C9orf72 , GRN , and MAPT mutation carriers, which resulted in substantially lower estimated sample sizes to detect a treatment effect than the individual cognitive tests. The GENFI-Cog composites have potential as cognitive endpoints for upcoming clinical trials. The results from this study provide recommendations for estimating sample size and trial duration.
Evaluating the Presymptomatic Time Window in Genetic Frontotemporal Dementia
Frontotemporal Dementia (FTD) is the second most common form of dementia in those under 65 years of age. To date the only known risk factors are genetic, and a third of FTD is inherited. Unique to the study of genetic FTD is examining of those at-risk of FTD who are many years from expected symptom onset. As the era of clinical trials for genetic FTD approaches, it is clear that pharmaceutical companies aim to target therapeutic interventions many years before symptom onset. To date one of the greatest challenges in genetic FTD is understanding the age at which at-risk individuals are likely to develop symptoms and having sensitive biomarkers to detect early presymptomatic changes. The work outlined in this thesis investigated the presymptomatic phase of genetic FTD, focusing on improving our understanding of when individuals at-risk of FTD are likely to develop symptoms; and exploring well-validated and novel cognitive assessments to devise more sensitive measures of cognition in genetic FTD. I begin my thesis by performing a retrospective study of genetic FTD to understand the factors that influence age at symptom onset, showing that an individual’s age at onset is significantly correlated with both parental and mean family age at onset. In the subsequent chapters I build upon these findings to explore cognitive changes in genetic FTD. I devise a cognitive composite based on pre-existing neuropsychology assessments to provide the optimal combination of assessments for use in a potential clinical trial. I also devised a novel cognitive assessment tool for the detection of early presymptomatic cognitive changes in genetic FTD to provide a proof of concept that this novel technique is sensitive to early presymptomatic cognitive changes. The work expands on what is currently known about the presymptomatic phase of genetic FTD and provides new avenues for understanding early cognitive changes.