Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
74 result(s) for "Mullish, Benjamin H."
Sort by:
Antibiotics promote intestinal growth of carbapenem-resistant Enterobacteriaceae by enriching nutrients and depleting microbial metabolites
The intestine is the primary colonisation site for carbapenem-resistant Enterobacteriaceae (CRE) and serves as a reservoir of CRE that cause invasive infections (e.g. bloodstream infections). Broad-spectrum antibiotics disrupt colonisation resistance mediated by the gut microbiota, promoting the expansion of CRE within the intestine. Here, we show that antibiotic-induced reduction of gut microbial populations leads to an enrichment of nutrients and depletion of inhibitory metabolites, which enhances CRE growth. Antibiotics decrease the abundance of gut commensals (including Bifidobacteriaceae and Bacteroidales ) in ex vivo cultures of human faecal microbiota; this is accompanied by depletion of microbial metabolites and enrichment of nutrients. We measure the nutrient utilisation abilities, nutrient preferences, and metabolite inhibition susceptibilities of several CRE strains. We find that CRE can use the nutrients (enriched after antibiotic treatment) as carbon and nitrogen sources for growth. These nutrients also increase in faeces from antibiotic-treated mice and decrease following intestinal colonisation with carbapenem-resistant Escherichia coli . Furthermore, certain microbial metabolites (depleted upon antibiotic treatment) inhibit CRE growth. Our results show that killing gut commensals with antibiotics facilitates CRE colonisation by enriching nutrients and depleting inhibitory microbial metabolites. Broad-spectrum antibiotics can kill harmless bacteria in our intestine, thus facilitating invasion by antibiotic-resistant bacteria such as carbapenem-resistant Enterobacteriaceae (CRE). Here, Yip et al. show that killing gut bacteria with antibiotics leads to enrichment of nutrients and depletion of inhibitory microbial metabolites, which overall potentiates CRE growth.
In-hospital mortality is associated with inflammatory response in NAFLD patients admitted for COVID-19
Although metabolic risk factors are associated with more severe COVID-19, there is little evidence on outcomes in patients with non-alcoholic fatty liver disease (NAFLD). We here describe the clinical characteristics and outcomes of NAFLD patients in a cohort hospitalised for COVID-19. This study included all consecutive patients admitted for COVID-19 between February and April 2020 at Imperial College Healthcare NHS Trust, with either imaging of the liver available dated within one year from the admission or a known diagnosis of NAFLD. Clinical data and early weaning score (EWS) were recorded. NAFLD diagnosis was based on imaging or past medical history and patients were stratified for Fibrosis-4 (FIB-4) index. Clinical endpoints were admission to intensive care unit (ICU)and in-hospital mortality. 561 patients were admitted. Overall, 193 patients were included in the study. Fifty nine patients (30%) died, 9 (5%) were still in hospital, and 125 (65%) were discharged. The NAFLD cohort (n = 61) was significantly younger (60 vs 70.5 years, p = 0.046) at presentation compared to the non-NAFLD (n = 132). NAFLD diagnosis was not associated with adverse outcomes. However, the NAFLD group had higher C reactive protein (CRP) (107 vs 91.2 mg/L, p = 0.05) compared to non-NAFLD(n = 132). Among NAFLD patients, male gender (p = 0.01), ferritin (p = 0.003) and EWS (p = 0.047) were associated with in-hospital mortality, while the presence of intermediate/high risk FIB-4 or liver cirrhosis was not. The presence of NAFLD per se was not associated with worse outcomes in patients hospitalised for COVID-19. Though NAFLD patients were younger on admission, disease stage was not associated with clinical outcomes. Yet, mortality was associated with gender and a pronounced inflammatory response in the NAFLD group.
Impact of Fecal Microbiota Transplantation on Gut Bacterial Bile Acid Metabolism in Humans
Fecal microbiota transplantation (FMT) is a promising therapeutic modality for the treatment and prevention of metabolic disease. We previously conducted a double-blind, randomized, placebo-controlled pilot trial of FMT in obese metabolically healthy patients in which we found that FMT enhanced gut bacterial bile acid metabolism and delayed the development of impaired glucose tolerance relative to the placebo control group. Therefore, we conducted a secondary analysis of fecal samples collected from these patients to assess the potential gut microbial species contributing to the effect of FMT to improve metabolic health and increase gut bacterial bile acid metabolism. Fecal samples collected at baseline and after 4 weeks of FMT or placebo treatment underwent shotgun metagenomic analysis. Ultra-high-performance liquid chromatography-mass spectrometry was used to profile fecal bile acids. FMT-enriched bacteria that have been implicated in gut bile acid metabolism included Desulfovibrio fairfieldensis and Clostridium hylemonae. To identify candidate bacteria involved in gut microbial bile acid metabolism, we assessed correlations between bacterial species abundance and bile acid profile, with a focus on bile acid products of gut bacterial metabolism. Bacteroides ovatus and Phocaeicola dorei were positively correlated with unconjugated bile acids. Bifidobacterium adolescentis, Collinsella aerofaciens, and Faecalibacterium prausnitzii were positively correlated with secondary bile acids. Together, these data identify several candidate bacteria that may contribute to the metabolic benefits of FMT and gut bacterial bile acid metabolism that requires further functional validation.
The evolution of the use of faecal microbiota transplantation and emerging therapeutic indications
Developments in high-throughput microbial genomic sequencing and other systems biology techniques have given novel insight into the potential contribution of the gut microbiota to health and disease. As a result, an increasing number of diseases have been characterised by distinctive changes in the composition and functionality of the gut microbiota; however, whether such changes are cause, consequence, or incidental to the disease in question remains largely uncertain. Restoration of the gut microbiota to a premorbid state is a key novel therapeutic approach of interest, and faecal microbiota transplantation—the transfer of prescreened stool from healthy donors into the gastrointestinal tract of patients—is gaining increasing importance in both the clinical and research settings. At present, faecal microbiota transplantation is only recommended in the treatment of recurrent Clostridioides difficile infection, although a large number of trials are ongoing worldwide exploring other potential therapeutic indications.
Antibiotic therapy and outcome from immune-checkpoint inhibitors
Sensitivity to immune checkpoint inhibitor (ICPI) therapy is governed by a complex interplay of tumor and host-related determinants. Epidemiological studies have highlighted that exposure to antibiotic therapy influences the probability of response to ICPI and predict for shorter patient survival across malignancies. Whilst a number of studies have reproducibly documented the detrimental effect of broad-spectrum antibiotics, the immune-biologic mechanisms underlying the association with outcome are poorly understood. Perturbation of the gut microbiota, an increasingly well-characterized factor capable of influencing ICPI-mediated immune reconstitution, has been indicated as a putative mechanism to explain the adverse effects attributed to antibiotic exposure in the context of ICPI therapy. Prospective studies are required to validate antibiotic-mediated gut perturbations as a mechanism of ICPI refractoriness and guide the development of strategies to overcome this barrier to an effective delivery of anti-cancer immunotherapy.
Rectal swabs as a viable alternative to faecal sampling for the analysis of gut microbiota functionality and composition
Faecal or biopsy samples are frequently used to analyse the gut microbiota, but issues remain with the provision and collection of such samples. Rectal swabs are widely-utilised in clinical practice and previous data demonstrate their potential role in microbiota analyses; however, studies to date have been heterogenous, and there are a particular lack of data concerning the utility of swabs for the analysis of the microbiota’s functionality and metabolome. We compared paired stool and rectal swab samples from healthy individuals to investigate whether rectal swabs are a reliable proxy for faecal sampling. There were no significant differences in key alpha and beta diversity measures between swab and faecal samples, and inter-subject variability was preserved. Additionally, no significant differences were demonstrated in abundance of major annotated phyla. Inferred gut functionality using Tax4Fun2 showed excellent correlation between the two sampling techniques (Pearson’s coefficient r = 0.9217, P  < 0.0001). Proton nuclear magnetic resonance ( 1 H NMR) spectroscopy enabled the detection of 20 metabolites, with overall excellent correlation identified between rectal swab and faecal samples for levels all metabolites collectively, although more variable degrees of association between swab and stool for levels of individual metabolites. These data support the utility of rectal swabs in both compositional and functional analyses of the gut microbiota.
Screening for NAFLD—Current Knowledge and Challenges
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of abnormal liver function tests worldwide, with an estimated prevalence ranging between 19–46% in the general population. Of note, NAFLD is also expected to become a leading cause of end-stage liver disease in the next decades. Given the high prevalence and severity of NAFLD, especially in high-risk populations (i.e., patients with type-2 diabetes mellitus and/or obesity), there is a major interest in early detection of the disease in primary care. Nevertheless, substantial uncertainties still surround the development of a screening policy for NAFLD, such as limitations in currently used non-invasive markers of fibrosis, cost-effectiveness and the absence of a licensed treatment. In this review, we summarise current knowledge and try to identify the limitations surrounding the screening policy for NAFLD in primary care.
Vancomycin-resistant enterococci utilise antibiotic-enriched nutrients for intestinal colonisation
Antibiotic treatment significantly disrupts the gut microbiome and promotes vancomycin-resistant enterococci (VRE) intestinal colonisation. These disruptions cause the intestine to act as a reservoir for VRE that seed difficult-to-treat infections. Here we show that antibiotics that promote VRE intestinal colonisation increase the concentration of a wide range of nutrients and decrease the concentration of a wide range of microbial metabolites. We show significant but incomplete suppression of VRE growth by individual short chain fatty acids that were decreased in antibiotic-treated faecal microbiomes. However, mixtures of short chain fatty acids provide complete or near complete suppression of VRE growth. We show that VRE use most nutrients increased in antibiotic-treated faecal microbiomes as carbon or nitrogen sources to support their growth, where Enterococcus faecium and Enterococcus faecalis have some common and some distinct preferences for the use of these specific nutrients. Finally, we show that E. faecium and E. faecalis occupy overlapping but distinct nutrient-defined intestinal niches that promote high growth when cultured with each other and when cultured with carbapenem-resistant Enterobacteriaceae . Our results demonstrate that VRE occupy distinct intestinal niches in the antibiotic-treated intestine, defined by their abilities to utilise specific enriched nutrients and their abilities to grow with reduced concentrations of inhibitory microbial metabolites. Here, the authors show that vancomycin-resistant enterococci grow in the antibiotic-treated gut microbiome by utilising enriched nutrients in the presence of reduced concentrations of inhibitory microbial metabolites.
The gut microbiome: an under-recognised contributor to the COVID-19 pandemic?
The novel coronavirus infection (COVID-19) caused by the SARS-CoV-2 virus has spread rapidly across the globe, culminating in major global morbidity and mortality. As such, there has been a rapid escalation in scientific and clinical activity aimed at increasing our comprehension of this virus. This volume of work has led to early insights into risk factors associated with severity of disease, and mechanisms that underpin the virulence and dynamics involved in viral transmission. These insights ultimately may help guide potential therapeutics to reduce the human, economic and social impact of this pandemic. Importantly, the gastrointestinal (GI) tract has emerged as an important organ influencing propensity to, and potentially severity of, COVID-19 infection. Furthermore, the gut microbiome has been linked to a variety of risk factors for COVID-19 infection, and manipulation of the gut microbiome is an attractive potential therapeutic target for a number of diseases. While data profiling the gut microbiome in COVID-19 infection to date are limited, they support the possibility of several routes of interaction between COVID-19, the gut microbiome, angiotensin converting enzyme 2 (ACE-2) expression in the small bowel and colon and gut inflammation. This article will explore the evidence that implicates the gut microbiome as a contributing factor to the pathogenesis, severity and disease course of COVID-19, and speculate about the gut microbiome’s capability as a therapeutic avenue against COVID-19. Lay summary It has been noted that certain baseline gut profiles of COVID-19 patients are associated with a more severe disease course, and the gut microbiome impacts the disease course of several contributory risk factors to the severity of COVID-19. A protein called ACE-2, which is found in the small intestine among other sites, is a key receptor for COVID-19 virus entry; there is evidence that the gut microbiome influences ACE-2 receptor expression, and hence may play a role in influencing COVID-19 infectivity and disease severity. Furthermore, the gut microbiome plays a significant role in immune regulation, and hence may be pivotal in influencing the immune response to COVID-19. In terms of understanding COVID-19 treatments, the gut microbiome is known to interact with several drug classes being used to target COVID-19 and should be factored into our understanding of how patients respond to treatment. Importantly, our understanding of the role of the gut microbiome in COVID-19 infection remains in its infancy, but future research may potentially aid our mechanistic understanding of viral infection, and new ways in which we might approach treating it.
Future Modulation of Gut Microbiota: From Eubiotics to FMT, Engineered Bacteria, and Phage Therapy
The human gut is inhabited by a multitude of bacteria, yeasts, and viruses. A dynamic balance among these microorganisms is associated with the well-being of the human being, and a large body of evidence supports a role of dysbiosis in the pathogenesis of several diseases. Given the importance of the gut microbiota in the preservation of human health, probiotics, prebiotics, synbiotics, and postbiotics have been classically used as strategies to modulate the gut microbiota and achieve beneficial effects for the host. Nonetheless, several molecules not typically included in these categories have demonstrated a role in restoring the equilibrium among the components of the gut microbiota. Among these, rifaximin, as well as other antimicrobial drugs, such as triclosan, or natural compounds (including evodiamine and polyphenols) have common pleiotropic characteristics. On one hand, they suppress the growth of dangerous bacteria while promoting beneficial bacteria in the gut microbiota. On the other hand, they contribute to the regulation of the immune response in the case of dysbiosis by directly influencing the immune system and epithelial cells or by inducing the gut bacteria to produce immune-modulatory compounds, such as short-chain fatty acids. Fecal microbiota transplantation (FMT) has also been investigated as a procedure to restore the equilibrium of the gut microbiota and has shown benefits in many diseases, including inflammatory bowel disease, chronic liver disorders, and extraintestinal autoimmune conditions. One of the most significant limits of the current techniques used to modulate the gut microbiota is the lack of tools that can precisely modulate specific members of complex microbial communities. Novel approaches, including the use of engineered probiotic bacteria or bacteriophage-based therapy, have recently appeared as promising strategies to provide targeted and tailored therapeutic modulation of the gut microbiota, but their role in clinical practice has yet to be clarified. The aim of this review is to discuss the most recently introduced innovations in the field of therapeutic microbiome modulation.