Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
74 result(s) for "Naranbhai, Vivek"
Sort by:
Innate Immune Activity Conditions the Effect of Regulatory Variants upon Monocyte Gene Expression
It is difficult to determine the mechanistic consequences of context-dependent genetic variants, some of which may be related to disease (see the Perspective by Gregersen ). Two studies now report on the effects of stimulating immunological monocytes and dendritic cells with proteins that can elicit a response to bacterial or viral infection and assess the functional links between genetic variants and profiles of gene expression. M. N. Lee et al. ( 10.1126/science.1246980 ) analyzed the expression of more than 400 genes, in dendritic cells from 30 healthy subjects, which revealed how expression quantitative trait loci (eQTLs) affect gene expression within the interferon-β and the Toll-like receptor 3 and 4 pathways. Fairfax et al. ( 10.1126/science.1246949 ) performed a genome-wide analysis to show that many eQTLs affected monocyte gene expression in a stimulus- or time-specific manner. Analysis of the transcriptional responses during induced innate immune activity in primary human monocytes is explained. [Also see Perspective by Gregersen ] To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor–modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9 , ATM , and IRF8 . Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.
CCR5AS lncRNA variation differentially regulates CCR5, influencing HIV disease outcome
Multiple genome-wide studies have identified associations between outcome of human immunodeficiency virus (HIV) infection and polymorphisms in and around the gene encoding the HIV co-receptor CCR5, but the functional basis for the strongest of these associations, rs1015164A/G, is unknown. We found that rs1015164 marks variation in an activating transcription factor 1 binding site that controls expression of the antisense long noncoding RNA (lncRNA) CCR5AS. Knockdown or enhancement of CCR5AS expression resulted in a corresponding change in CCR5 expression on CD4 + T cells. CCR5AS interfered with interactions between the RNA-binding protein Raly and the CCR5 3′ untranslated region, protecting CCR5 messenger RNA from Raly-mediated degradation. Reduction in CCR5 expression through inhibition of CCR5AS diminished infection of CD4 + T cells with CCR5-tropic HIV in vitro. These data represent a rare determination of the functional importance of a genome-wide disease association where expression of a lncRNA affects HIV infection and disease progression. Multiple genetic variants have been identified that influence the outcome of HIV infection. Carrington and colleagues investigate the mechanism of one of the strongest variants, rs1015164, and show that it influences expression of a lncRNA controlling CCR5 expression.
Identification of host–pathogen-disease relationships using a scalable multiplex serology platform in UK Biobank
Certain infectious agents are recognised causes of cancer and other chronic diseases. To understand the pathological mechanisms underlying such relationships, here we design a Multiplex Serology platform to measure quantitative antibody responses against 45 antigens from 20 infectious agents including human herpes, hepatitis, polyoma, papilloma, and retroviruses, as well as Chlamydia trachomatis , Helicobacter pylori and Toxoplasma gondii , then assayed a random subset of 9695 UK Biobank participants. We find seroprevalence estimates consistent with those expected from prior literature and confirm multiple associations of antibody responses with sociodemographic characteristics (e.g., lifetime sexual partners with C. trachomatis ), HLA genetic variants (rs6927022 with Epstein-Barr virus (EBV) EBNA1 antibodies) and disease outcomes (human papillomavirus-16 seropositivity with cervical intraepithelial neoplasia, and EBV responses with multiple sclerosis). Our accessible dataset is one of the largest incorporating diverse infectious agents in a prospective UK cohort offering opportunities to improve our understanding of host-pathogen-disease relationships with significant clinical and public health implications. Here, the authors design a multiplex serology platform to quantitatively measure antibodies against 20 infectious agents in UK Biobank participants and confirm associations of antibody responses with sociodemographic characteristics, HLA genetic variants, and disease outcomes.
HLA-A03 and response to immune checkpoint blockade in cancer: an epidemiological biomarker study
Predictive biomarkers could allow more precise use of immune checkpoint inhibitors (ICIs) in treating advanced cancers. Given the central role of HLA molecules in immunity, variation at the HLA loci could differentially affect the response to ICIs. The aim of this epidemiological study was to determine the effect of HLA-A*03 as a biomarker for predicting response to immunotherapy. In this epidemiological study, we investigated the clinical outcomes (overall survival, progression free survival, and objective response rate) after treatment for advanced cancer in eight cohorts of patients: three observational cohorts of patients with various types of advanced tumours (the Memorial Sloan Kettering Integrated Mutation Profiling of Actionable Cancer Targets [MSK-IMPACT] cohort, the Dana-Farber Cancer Institute [DFCI] Profile cohort, and The Cancer Genome Atlas) and five clinical trials of patients with advanced bladder cancer (JAVELIN Solid Tumour) or renal cell carcinoma (CheckMate-009, CheckMate-010, CheckMate-025, and JAVELIN Renal 101). In total, these cohorts included 3335 patients treated with various ICI agents (anti-PD-1, anti-PD-L1, and anti-CTLA-4 inhibitors) and 10 917 patients treated with non-ICI cancer-directed therapeutic approaches. We initially modelled the association of HLA amino-acid variation with overall survival in the MSK-IMPACT discovery cohort, followed by a detailed analysis of the association between HLA-A*03 and clinical outcomes in MSK-IMPACT, with replication in the additional cohorts (two further observational cohorts and five clinical trials). HLA-A*03 was associated in an additive manner with reduced overall survival after ICI treatment in the MSK-IMPACT cohort (HR 1·48 per HLA-A*03 allele [95% CI 1·20–1·82], p=0·00022), the validation DFCI Profile cohort (HR 1·22 per HLA-A*03 allele, 1·05–1·42; p=0·0097), and in the JAVELIN Solid Tumour clinical trial for bladder cancer (HR 1·36 per HLA-A*03 allele, 1·01–1·85; p=0·047). The HLA-A*03 effect was observed across ICI agents and tumour types, but not in patients treated with alternative therapies. Patients with HLA-A*03 had shorter progression-free survival in the pooled patient population from the three CheckMate clinical trials of nivolumab for renal cell carcinoma (HR 1·31, 1·01–1·71; p=0·044), but not in those receiving control (everolimus) therapies. Objective responses were observed in none of eight HLA-A*03 homozygotes in the ICI group (compared with 59 [26·6%] of 222 HLA-A*03 non-carriers and 13 (17·1%) of 76 HLA-A*03 heterozygotes). HLA-A*03 was associated with shorter progression-free survival in patients receiving ICI in the JAVELIN Renal 101 randomised clinical trial for renal cell carcinoma (avelumab plus axitinib; HR 1·59 per HLA-A*03 allele, 1·16–2·16; p=0·0036), but not in those receiving control (sunitinib) therapy. Objective responses were recorded in one (12·5%) of eight HLA-A*03 homozygotes in the ICI group (compared with 162 [63·8%] of 254 HLA-A*03 non-carriers and 40 [55·6%] of 72 HLA-A*03 heterozygotes). HLA-A*03 was associated with impaired outcome in meta-analysis of all 3335 patients treated with ICI at genome-wide significance (p=2·01 × 10−8) with no evidence of heterogeneity in effect (I2 0%, 95% CI 0–0·76) HLA-A*03 is a predictive biomarker of poor response to ICI. Further evaluation of HLA-A*03 is warranted in randomised trials. HLA-A*03 carriage could be considered in decisions to initiate ICI in patients with cancer. National Institutes of Health, Merck KGaA, and Pfizer.
T-cell activation is an immune correlate of risk in BCG vaccinated infants
Vaccines to protect against tuberculosis (TB) are urgently needed. We performed a case–control analysis to identify immune correlates of TB disease risk in Bacille Calmette–Guerin (BCG) immunized infants from the MVA85A efficacy trial. Among 53 TB case infants and 205 matched controls, the frequency of activated HLA-DR + CD4 + T cells associates with increased TB disease risk (OR=1.828, 95% CI=1.25–2.68, P =0.002, FDR=0.04, conditional logistic regression). In an independent study of Mycobacterium tuberculosis -infected adolescents, activated HLA-DR + CD4 + T cells also associate with increased TB disease risk (OR=1.387, 95% CI=1.068–1.801, P =0.014, conditional logistic regression). In infants, BCG-specific T cells secreting IFN-γ associate with reduced risk of TB (OR=0.502, 95% CI=0.29–0.86, P =0.013, FDR=0.14). The causes and impact of T-cell activation on disease risk should be considered when designing and testing TB vaccine candidates for these populations. BCG vaccine confers only partial protection against tuberculosis. Here the authors show that the risk of tuberculosis infection and progression to disease in BCG-immunized children positively correlates with the frequency of activated HLA-DR + CD4 + T cells.
Elevated HLA-A expression impairs HIV control through inhibition of NKG2A-expressing cells
The human leukocyte antigen (HLA) gene complex varies enormously among individuals and helps explain individual variation in immunity to infectious diseases. Ramsuran et al. examined data from almost 10,000 HIV infections. Expression of the HLA-A and - B alleles was associated with higher viral load, reduced CD4 + T cell counts, and accelerated progression to AIDS. Higher levels of HLA-A expression increased expression of HLA-E , which blocks a specific receptor (NKG2A) on the immune cells that normally eliminate virus-infected cells. Thus, targeting NKG2A might provide a therapeutic avenue for HIV treatment. Science , this issue p. 86 Natural killer cell inhibition mediated by HLA-A , -E , and -B alleles elevates viremia and accelerates progression to AIDS. The highly polymorphic human leukocyte antigen ( HLA ) locus encodes cell surface proteins that are critical for immunity. HLA-A expression levels vary in an allele-dependent manner, diversifying allele-specific effects beyond peptide-binding preference. Analysis of 9763 HIV-infected individuals from 21 cohorts shows that higher HLA-A levels confer poorer control of HIV. Elevated HLA-A expression provides enhanced levels of an HLA-A–derived signal peptide that specifically binds and determines expression levels of HLA-E, the ligand for the inhibitory NKG2A natural killer (NK) cell receptor. HLA-B haplotypes that favor NKG2A-mediated NK cell licensing (i.e., education) exacerbate the deleterious effect of high HLA-A on HIV control, consistent with NKG2A-mediated inhibition impairing NK cell clearance of HIV-infected targets. Therapeutic blockade of HLA-E:NKG2A interaction may yield benefit in HIV disease.
Multi-ancestry meta-analysis of host genetic susceptibility to tuberculosis identifies shared genetic architecture
The heritability of susceptibility to tuberculosis (TB) disease has been well recognized. Over 100 genes have been studied as candidates for TB susceptibility, and several variants were identified by genome-wide association studies (GWAS), but few replicate. We established the International Tuberculosis Host Genetics Consortium to perform a multi-ancestry meta-analysis of GWAS, including 14,153 cases and 19,536 controls of African, Asian, and European ancestry. Our analyses demonstrate a substantial degree of heritability (pooled polygenic h 2 = 26.3%, 95% CI 23.7–29.0%) for susceptibility to TB that is shared across ancestries, highlighting an important host genetic influence on disease. We identified one global host genetic correlate for TB at genome-wide significance (p<5 × 10 -8 ) in the human leukocyte antigen (HLA)-II region (rs28383206, p-value=5.2 × 10 -9 ) but failed to replicate variants previously associated with TB susceptibility. These data demonstrate the complex shared genetic architecture of susceptibility to TB and the importance of large-scale GWAS analysis across multiple ancestries experiencing different levels of infection pressure.
Natural Killer cells demonstrate distinct eQTL and transcriptome-wide disease associations, highlighting their role in autoimmunity
Natural Killer cells are innate lymphocytes with central roles in immunosurveillance and are implicated in autoimmune pathogenesis. The degree to which regulatory variants affect Natural Killer cell gene expression is poorly understood. Here we perform expression quantitative trait locus mapping of negatively selected Natural Killer cells from a population of healthy Europeans ( n  = 245). We find a significant subset of genes demonstrate expression quantitative trait loci specific to Natural Killer cells and these are highly informative of human disease, in particular autoimmunity. A Natural Killer cell transcriptome-wide association study across five common autoimmune diseases identifies further novel associations at 27 genes. In addition to these cis observations, we find novel master-regulatory regions impacting expression of trans gene networks at regions including 19q13.4, the Killer cell Immunoglobulin-like Receptor region, GNLY , MC1R and UVSSA . Our findings provide new insights into the unique biology of Natural Killer cells, demonstrating markedly different expression quantitative trait loci from other immune cells, with implications for disease mechanisms. Natural Killer cells are key mediators of anti-tumour immunosurveillance and anti-viral immunity. Here, the authors map regulatory genetic variation in primary Natural Killer cells, providing new insights into their role in human health and disease.
Dynamic heterogeneity in COVID-19: Insights from a mathematical model
Critical illness, such as severe COVID-19, is heterogenous in presentation and treatment response. However, it remains possible that clinical course may be influenced by dynamic and/or random events such that similar patients subject to similar injuries may yet follow different trajectories. We deployed a mechanistic mathematical model of COVID-19 to determine the range of possible clinical courses after SARS-CoV-2 infection, which may follow from specific changes in viral properties, immune properties, treatment modality and random external factors such as initial viral load. We find that treatment efficacy and baseline patient or viral features are not the sole determinant of outcome. We found patients with enhanced innate or adaptive immune responses can experience poor viral control, resolution of infection or non-infectious inflammatory injury depending on treatment efficacy and initial viral load. Hypoxemia may result from poor viral control or ongoing inflammation despite effective viral control. Adaptive immune responses may be inhibited by very early effective therapy, resulting in viral load rebound after cessation of therapy. Our model suggests individual disease course may be influenced by the interaction between external and patient-intrinsic factors. These data have implications for the reproducibility of clinical trial cohorts and timing of optimal treatment.
Predicting the risk of pulmonary tuberculosis based on the neutrophil-to-lymphocyte ratio at TB screening in HIV-infected individuals
Background The neutrophil to lymphocyte ratio (NL ratio) has been reported to be a predictive biomarker of tuberculosis (TB). We assessed the association between the NL ratio and the incidence of active TB cases within 1 year after TB screening among HIV-infected individuals in Thailand. Methods A day care center that supports HIV-infected individuals in northernmost Thailand performed TB screening and follow-up visits. We compared the baseline characteristics between the TB screening positive group and the TB screening negative group. The threshold value of NL ratio was determined by cubic-spline curves and NL ratios were categorized as high or low NL ratio. We assessed the association between NL ratio and progression to active TB within 1-year using the Cox-proportional hazard model. Results Of the 1064 HIV-infected individuals who screened negative for TB at baseline, 5.6% ( N  = 60) eventually developed TB and 26 died after TB diagnosis. A high NL ratio was associated with a higher risk of TB (adjusted hazard ratio (aHR) 2.19, 95% CI: 1.23–3.90), after adjusting for age, sex, ethnicity, CD4 counts, and other risk factors. A high NL ratio in HIV-infected individuals with normal chest X-ray predicted TB development risk. In particular, a high NL ratio with TB symptoms could predict the highest risk of TB development (aHR 2.58, 95%CI: 1.07–6.23). Conclusions Our results showed that high NL ratio increased the risk of TB. NL ratio combined with TB symptoms could increase the accuracy of TB screening among HIV-infected individuals.