Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
105 result(s) for "Pan, Xiaole"
Sort by:
Impact of Arctic amplification on declining spring dust events in East Asia
Dust aerosols play key roles in affecting regional and global climate through their direct, indirect, and semi-direct effects. Dust events have decreased rapidly since the 1980s in East Asia, particularly over northern China, primarily because of changes in meteorological parameters (e.g. surface wind speed and precipitation). In this study, we found that winter (December–January–February) Arctic amplification associated with weakened temperature gradients along with decreased zonal winds is primarily responsible for the large decline in following spring (March–April–May) dust event occurrences over northern China since the mid-1980s. A dust index was developed for northern China by combining the daily frequency of three types of dust event (dust storm, blowing dust, and floating dust). Using the empirical orthogonal function (EOF) analysis, the first pattern of dust events was obtained for spring dust index anomalies, which accounts for 56.2% of the variability during 1961–2014. Moreover, the enhanced Arctic amplification and stronger Northern Hemisphere annular mode (NAM) in winter can result in the anticyclonic anomalies over Siberia and Mongolia, while cyclonic anomalies over East Europe in spring. These results are significantly correlated with the weakened temperature gradients, increased precipitation and soil moisture, and decreased snow cover extent in the mid-latitude over Northern Hemisphere. Based on the future predictions obtained from the Fifth Climate Models Intercomparison Project (CMIP5), we found that the dust event occurrences may continually decrease over northern China due to the enhanced Arctic amplification in future climate.
Real-time observational evidence of changing Asian dust morphology with the mixing of heavy anthropogenic pollution
Natural mineral dust and heavy anthropogenic pollution and its complex interactions cause significant environmental problems in East Asia. Due to restrictions of observing technique, real-time morphological change in Asian dust particles owing to coating process of anthropogenic pollutants is still statistically unclear. Here, we first used a newly developed, single-particle polarization detector and quantitatively investigate the evolution of the polarization property of backscattering light reflected from dust particle as they were mixing with anthropogenic pollutants in North China. The decrease in observed depolarization ratio is mainly attributed to the decrease of aspect ratio of the dust particles as a result of continuous coating processes. Hygroscopic growth of Calcium nitrate (Ca(NO 3 ) 2 ) on the surface of the dust particles played a vital role, particularly when they are stagnant in the polluted region with high RH conditions. Reliable statistics highlight the significant importance of internally mixed, ‘quasi-spherical’ Asian dust particles, which markedly act as cloud condensation nuclei and exert regional climate change.
“APEC Blue”: Secondary Aerosol Reductions from Emission Controls in Beijing
China implemented strict emission control measures in Beijing and surrounding regions to ensure good air quality during the 2014 Asia-Pacific Economic Cooperation (APEC) summit. We conducted synchronous aerosol particle measurements with two aerosol mass spectrometers at different heights on a meteorological tower in urban Beijing to investigate the variations in particulate composition, sources and size distributions in response to emission controls. Our results show consistently large reductions in secondary inorganic aerosol (SIA) of 61–67% and 51–57% and in secondary organic aerosol (SOA) of 55% and 37%, at 260 m and ground level, respectively, during the APEC summit. These changes were mainly caused by large reductions in accumulation mode particles and by suppression of the growth of SIA and SOA by a factor of 2–3, which led to blue sky days during APEC commonly referred to as “APEC Blue”. We propose a conceptual framework for the evolution of primary and secondary species and highlight the importance of regional atmospheric transport in the formation of severe pollution episodes in Beijing. Our results indicate that reducing the precursors of secondary aerosol over regional scales is crucial and effective in suppressing the formation of secondary particulates and mitigating PM pollution.
The role of biomass burning states in light absorption enhancement of carbonaceous aerosols
Carbonaceous aerosols, which are emitted from biomass burning, significantly contribute to the Earth’s radiation balance. Radiative forcing caused by biomass burning has been poorly qualified, which is largely attributed to uncertain absorption enhancement values ( E abs ) of black carbon (BC) aerosols. Laboratory measurements and theoretical modelling indicate a significant value of E abs ; but this enhancement is observed to be negligible in the ambient environment, implying that models may overestimate global warming due to BC. Here, we present an aggregate model integrating BC aerosol ensembles with different morphologies and mixing states and report a quantitative analysis of the BC E abs from different combustion states during biomass burning. We show that the BC E abs produced by flaming combustion may be up to two times more than those produced by smouldering combustion, suggesting that the particle morphology and mixing state of freshly emitted BC aerosols is an important source of the contrasting values of E abs . The particle morphology of freshly emitted BC aerosols is widely assumed to be bare in models, which is rare in the ambient environment and leads to small estimates of E abs by field observations. We conclude that the exact description of freshly emitted carbonaceous aerosols plays an important role in constraining aerosol radiative forcing.
Multi-method determination of the below-cloud wet scavenging coefficients of aerosols in Beijing, China
Wet scavenging is one of the most efficient processes for removing aerosols from the atmosphere. This process is not well constrained in chemical transport models (CTMs) due to a paucity of localized parameterization regarding the below-cloud wet scavenging coefficient (BWSC). Here we conducted field measurements of the BWSC during the Atmospheric Pollution and Human Health Beijing (APHH-Beijing) campaign of 2016. Notably, the observed BWSC values based on the updated aerosol mass balance agree well with another estimation technique, and they fall in a range of 10−5 s−1. The measurement in this winter campaign, combined with that in summer of 2014, supported an exponential power distribution of BWSCs with rainfall intensity. The observed parameters were also compared with both the theoretical calculations and modeling results. We found that the theoretical estimations can effectively characterize the observed BWSCs of aerosols with sizes smaller than 0.2 µm and larger than 2.5 µm. However, the theoretical estimations were an order of magnitude lower than observed BWSCs within 0.2–2.5 µm, a domain size range of urban aerosols. Such an underestimation of BWSC through a theoretical method has been confirmed not only in APHH-Beijing campaign but also in all the rainfall events in summer of 2014. Since the model calculations usually originated from the theoretical estimations with simplified scheme, the significantly lower BWSC could well explain the underprediction of wet depositions in polluted regions as reported by the Model Inter-Comparison Study for Asia (MICS-Asia) and the global assessment of the Task Force on Hemispheric Transport of Atmospheric Pollutants (TF-HTAP). The findings highlighted that the wet deposition module in the CTMs requires improvement based on field measurement estimation to construct a more reasonable simulation scheme for BWSC, especially in polluted regions.
Variability of depolarization of aerosol particles in the megacity of Beijing: implications for the interaction between anthropogenic pollutants and mineral dust particles
East Asia is suffering from severe air pollution problems due to intensive anthropogenic emissions and natural mineral dust aerosols. During transport, the aerosol particles undergo complex mixing processes, resulting in great impacts on regional air quality, human health and climate. In this study, we conducted a long-term observation using an optical particle counter equipped with a polarization detection module (POPC) at an urban site in Beijing. Mass concentrations of both PM2.5 and PM10 estimated from POPC compared well with ground-based measurements. The results revealed that the observed depolarization ratio (δ, termed as the ratio of the intensity of the s-polarized signal to the intensity of the 120∘ backward scattering signal [s/(s+p)]) for aerosol particles in the fine mode was generally much lower in summer than that in spring as a result of predominance of different aerosol types. Mineral dust particles in the coarse mode normally had a large δ value (0.3±0.05) owing to their nonspherical shape; however, particles in the fine mode mostly had water-soluble compositions, which led to an apparent decrease of their δ values in particular high relative humidity (RH) conditions. Because the observation site was subject to the impact of frequent dust events in spring, the δ value of particle at 1 µm was almost twice as high as that (0.07±0.01) in summer. Based on size-resolved δ values, anthropogenic pollutants, mineral dust and polluted mineral dust particles and their contribution to local air quality could be well distinguished. About 26.7 % of substandard days (daily averaged PM2.5 concentration larger than 75 µg m−3) in Beijing featured high atmospheric loading of coarse-mode particles in winter and springtime. In particular, during severe pollution episodes in winter, the δ values of coarse-mode particles decreased by 13 %, which implies a high possibility of dust-related heterogeneous processes in pollution formation. During dust events, δ values of particles with optical size (Dp) of 5 µm evidently decreased, with an increase of the PM2.5 ∕ PM10 ratio as well as RH, indicating the morphological changes of mineral dust. This study confirmed that high RH tends to promote water absorption processes on the dust surface as well as the coating of soluble compounds, and suggested that remote sensing techniques for aerosols may underestimate the impact of dust particles due to the complex mixing of dust and anthropogenic particles in urban areas, and the interaction between dust particles and pollutants should be considered well by the optical model.
Mixing characteristics of refractory black carbon aerosols at an urban site in Beijing
Black carbon aerosols play an important role in climate change because they directly absorb solar radiation. In this study, the mixing state of refractory black carbon (rBC) at an urban site in Beijing in the early summer of 2018 was studied with a single-particle soot photometer (SP2) as well as a tandem observation system with a centrifugal particle mass analyzer (CPMA) and a differential mobility analyzer (DMA). The results demonstrated that the mass-equivalent size distribution of rBC exhibited an approximately lognormal distribution with a mass median diameter (MMD) of 171 nm. When the site experienced prevailing southerly winds, the MMD of rBC increased notably, by 19 %. During the observational period, the ratio of the diameter of rBC-containing particles (Dp) to the rBC core (Dc) was 1.20 on average for Dc=180 nm, indicating that the majority of rBC particles were thinly coated. The Dp∕Dc value exhibited a clear diurnal pattern, with a maximum at 14:00 LST and a Dp growth rate of 2.3 nm h−1; higher Ox conditions increased the coating growth rate. The microphysical properties of rBC were also studied. Bare rBC particles were mostly found in fractal structures with a mass fractal dimensions (Dfm) of 2.35, with limited variation during both clean and polluted periods. The morphology of rBC changed with coating thickness increasing. When the mass ratio of nonrefractory matter to rBC (MR) was <1.5, rBC-containing particles were primarily found in external fractal structures, and they changed to a core–shell structure when MR>6, at which point the measured scattering cross section of rBC-containing particles was consistent with that based on the Mie-scattering simulation. We found that only 28 % of the rBC-containing particles were in core–shell structures with a particle mass of 10 fg in the clean period but that proportion increased considerably, to 45 %, in the polluted period. Due to the morphology change, the absorption enhancement (Eabs) was 12 % lower than that predicted for core–shell structures.
Influences of stratospheric intrusions to high summer surface ozone over a heavily industrialized region in northern China
The stratospheric contribution to tropospheric ozone has long been a topic of much debate over the past few decades. In this study, we leveraged multiple datasets from surface, sounding and satellite observations to reanalysis datasets, along with a global chemical transport model (Global Nested Air Quality Prediction Modelling System, GNAQPMS) to investigate the impact of a stratospheric-to-tropospheric transport (STT) event characterized by long duration and wide range in the summer on surface high ozone episodes over heavily industrialized regions in northern China. In 14–18 August 2019, the ERA5 reanalysis datasets showed a potential vorticity (PV) tongue and a deep, upper-level trough penetrate towards 35° N over the North China Plain (NCP), indicating the occurrence of a stratospheric intrusion. From Atmospheric Infrared Sounder (AIRS) measurements, we found that the ozone-rich, stratospheric air mass had been injected into the lower altitudes. The GNAQPMS generally captured the featured layers, although there was a slight underestimation in the low troposphere. The averaged magnitudes of stratospheric contribution (O3S) and percentage (O3F) simulated by GNAQPMS were 3–20 μ g m −3 and 6%–20%, respectively, while the Whole Atmosphere Community Climate Model (WACCM) indicated a higher stratospheric contribution by 3–5 μ g m −3 . Through this study, we give our opinions on the controversial topic of a more thorough understanding of the influence of natural processes apart from anthropogenic emissions, even in a heavily polluted region during summer.
Molecular markers of biomass burning and primary biological aerosols in urban Beijing: size distribution and seasonal variation
Biomass burning and primary biological aerosol particles account for an important part of urban aerosols. Floods of studies have been conducted on the chemical compositions of fine aerosols (PM2.5) in megacities where the haze pollution is one of the severe environmental issues in China. However, little is known about their size distributions in atmospheric aerosols in the urban boundary layer. Here, size-segregated aerosol samples were collected in Beijing during haze and clear days from April 2017 to January 2018. Three anhydrosugars, six primary saccharides and four sugar alcohols in these samples were identified and quantified by gas chromatography/mass spectrometry (GC/MS). Higher concentrations of a biomass burning tracer, levoglucosan, were detected in autumn and winter than in other seasons. Sucrose, glucose, fructose, mannitol and arabitol were more abundant in the bloom and glowing seasons. A particularly high level of trehalose was found in spring, which was largely associated with the Asian dust outflows. Anhydrosugars, xylose, maltose, inositol and erythritol are mainly present in the fine mode (<2.1 µm), while the others showed the coarse-mode preference. The concentrations of measured tracers of biomass burning particles and primary biological particles in the haze events were higher than those in the non-hazy days, with enrichment factors of 2–10. Geometric mean diameters (GMDs) of molecular markers of biomass burning and primary biological aerosols showed that there was no significant difference in the coarse mode (>2.1 µm) between the haze and non-haze samples, while a size shift towards large particles and large GMDs in the fine fraction (<2.1 µm) was detected during the hazy days, which highlights that the stable meteorological conditions with high relative humidity in urban Beijing may favor the condensation of organics onto coarse particles.The contributions of reconstructed primary organic carbon (POC) by tracer-based methods from plant debris, fungal spores and biomass burning to aerosol OC in the total-mode particles were in the ranges of 0.09 %–0.30 % (on average 0.21 %), 0.13 %–1.0 % (0.38 %) and 1.2 %–7.5 % (4.5 %), respectively. This study demonstrates that the contribution of biomass burning was significant in Beijing throughout the whole year with the predominance in the fine mode, while the contributions of plant debris and fungal spores dominated in spring and summer in the coarse mode, especially in sizes >5.8 µm. Our observations demonstrate that the sources, abundance and chemical composition of urban aerosol particles are strongly size dependent in Beijing, which is important to better understand the environmental and health effects of urban aerosols and should be considered in air quality and climate models.
Validation of ERA5 Boundary Layer Meteorological Variables by Remote-Sensing Measurements in the Southeast China Mountains
Mountainous terrains are typical over southeast China, with complex and diverse topography, large terrain undulations, rich geographic features, and meteorological variations. Previous studies show that ERA5 meteorological variables are generally accurate with respect to large plains or urban agglomerations, while their applicability to mountainous areas remains inconclusive. In this paper, using high-precision measurements probed by ground-based remote sensing instruments in May–July 2023 at a typical mountainous Shanghuang site in southeast China, the vertical accuracy of the ERA5 reanalysis datasets were comparatively evaluated. Our findings depict that the horizontal wind speeds of the ERA5 reanalysis data show a good performance compared to the Doppler lidar observations. In quantitative terms, ERA5 horizontal wind speeds are about 8% higher than the observed values below a height of 400 m, while above 400 m, an increasing negative bias is observed along as altitude increases. Differing from the horizontal wind speeds, there is a large discrepancy in the vertical wind speeds between the ERA5 and the observations, with a deviation of −150% to 40%. In terms of the thermal variables, the temperature extracted from ERA5 are consistent with the measurements in the low troposphere. Nevertheless, large systematic errors occur at 2000–3000 m, and the overall presentation shows that the errors gradually increase with the increase in altitude. Concerning the relative humidity, the general trend in ERA5 is similar to that observed by the microwave radiometer, but the relative errors from 500 to 2500 m range from 40% to 100%. This study also reveals that ERA5 is poorly representative and requires further improvements during extreme weather events such as rainstorms and typhoons. In particular, the horizontal wind speeds at the middle and lower levels deviate strongly from the observations. Given the importance of atmospheric thermodynamic stratifications in terms of both environmental and climatic issues, the results expand the application of the ERA5 reanalysis datasets in the mountainous areas of southeast China. More importantly, it provides credible reference data for the meteorological predictions and climate modelings in the southeast China mountainous region.