Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
20 result(s) for "Papp, Audrey C."
Sort by:
AmpliSeq transcriptome analysis of human alveolar and monocyte-derived macrophages over time in response to Mycobacterium tuberculosis infection
Human alveolar macrophages (HAM) are primary bacterial niche and immune response cells during Mycobacterium tuberculosis (M.tb) infection, and human blood monocyte-derived macrophages (MDM) are a model for investigating M.tb-macrophage interactions. Here, we use a targeted RNA-Seq method to measure transcriptome-wide changes in RNA expression patterns of freshly obtained HAM (used within 6 h) and 6 day cultured MDM upon M.tb infection over time (2, 24 and 72 h), in both uninfected and infected cells from three donors each. The Ion AmpliSeq™ Transcriptome Human Gene Expression Kit (AmpliSeq) uses primers targeting 18,574 mRNAs and 2,228 non-coding RNAs (ncRNAs) for a total of 20,802 transcripts. AmpliSeqTM yields highly precise and reproducible gene expression profiles (R2 >0.99). Taking advantage of AmpliSeq's reproducibility, we establish well-defined quantitative RNA expression patterns of HAM versus MDM, including significant M.tb-inducible genes, in networks and pathways that differ in part between MDM and HAM. A similar number of expressed genes are detected at all time-points between uninfected MDM and HAM, in common pathways including inflammatory and immune functions, but canonical pathway differences also exist. In particular, at 2 h, multiple genes relevant to the immune response are preferentially expressed in either uninfected HAM or MDM, while the HAM RNA profiles approximate MDM profiles over time in culture, highlighting the unique RNA expression profile of freshly obtained HAM. MDM demonstrate a greater transcriptional response than HAM upon M.tb infection, with 2 to >10 times more genes up- or down-regulated. The results identify key genes involved in cellular responses to M.tb in two different human macrophage types. Follow-up bioinformatics analysis indicates that approximately 30% of response genes have expression quantitative trait loci (eQTLs in GTEx), common DNA variants that can influence host gene expression susceptibility or resistance to M.tb, illustrated with the TREM1 gene cluster and IL-10.
Cholesteryl Ester Transfer Protein (CETP) Polymorphisms Affect mRNA Splicing, HDL Levels, and Sex-Dependent Cardiovascular Risk
Polymorphisms in and around the Cholesteryl Ester Transfer Protein (CETP) gene have been associated with HDL levels, risk for coronary artery disease (CAD), and response to therapy. The mechanism of action of these polymorphisms has yet to be defined. We used mRNA allelic expression and splice isoform measurements in human liver tissues to identify the genetic variants affecting CETP levels. Allelic CETP mRNA expression ratios in 56 human livers were strongly associated with several variants 2.5-7 kb upstream of the transcription start site (e.g., rs247616 p = 6.4 × 10(-5), allele frequency 33%). In addition, a common alternatively spliced CETP isoform lacking exon 9 (Δ9), has been shown to prevent CETP secretion in a dominant-negative manner. The Δ 9 expression ranged from 10 to 48% of total CETP mRNA in 94 livers. Increased formation of this isoform was exclusively associated with an exon 9 polymorphism rs5883-C>T (p = 6.8 × 10(-10)) and intron 8 polymorphism rs9930761-T>C (5.6 × 10(-8)) (in high linkage disequilibrium with allele frequencies 6-7%). rs9930761 changes a key splicing branch point nucleotide in intron 8, while rs5883 alters an exonic splicing enhancer sequence in exon 9.The effect of these polymorphisms was evaluated in two clinical studies. In the Whitehall II study of 4745 subjects, both rs247616 and rs5883T/rs9930761C were independently associated with increased HDL-C levels in males with similar effect size (rs247616 p = 9.6 × 10(-28) and rs5883 p = 8.6 × 10(-10), adjusted for rs247616). In an independent multiethnic US cohort of hypertensive subjects with CAD (INVEST-GENE), rs5883T/rs9930761C alone were significantly associated with increased incidence of MI, stroke, and all-cause mortality in males (rs5883: OR 2.36 (CI 1.29-4.30), p = 0.005, n = 866). These variants did not reach significance in females in either study. Similar to earlier results linking low CETP activity with poor outcomes in males, our results suggest genetic, sex-dependent CETP splicing effects on cardiovascular risk by a mechanism independent of circulating HDL-C levels.
Allele-Selective Transcriptome Recruitment to Polysomes Primed for Translation: Protein-Coding and Noncoding RNAs, and RNA Isoforms
mRNA translation into proteins is highly regulated, but the role of mRNA isoforms, noncoding RNAs (ncRNAs), and genetic variants remains poorly understood. mRNA levels on polysomes have been shown to correlate well with expressed protein levels, pointing to polysomal loading as a critical factor. To study regulation and genetic factors of protein translation we measured levels and allelic ratios of mRNAs and ncRNAs (including microRNAs) in lymphoblast cell lines (LCL) and in polysomal fractions. We first used targeted assays to measure polysomal loading of mRNA alleles, confirming reported genetic effects on translation of OPRM1 and NAT1, and detecting no effect of rs1045642 (3435C>T) in ABCB1 (MDR1) on polysomal loading while supporting previous results showing increased mRNA turnover of the 3435T allele. Use of high-throughput sequencing of complete transcript profiles (RNA-Seq) in three LCLs revealed significant differences in polysomal loading of individual RNA classes and isoforms. Correlated polysomal distribution between protein-coding and non-coding RNAs suggests interactions between them. Allele-selective polysome recruitment revealed strong genetic influence for multiple RNAs, attributable either to differential expression of RNA isoforms or to differential loading onto polysomes, the latter defining a direct genetic effect on translation. Genes identified by different allelic RNA ratios between cytosol and polysomes were enriched with published expression quantitative trait loci (eQTLs) affecting RNA functions, and associations with clinical phenotypes. Polysomal RNA-Seq combined with allelic ratio analysis provides a powerful approach to study polysomal RNA recruitment and regulatory variants affecting protein translation.
RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles
Background We used RNA sequencing to analyze transcript profiles of ten autopsy brain regions from ten subjects. RNA sequencing techniques were designed to detect both coding and non-coding RNA, splice isoform composition, and allelic expression. Brain regions were selected from five subjects with a documented history of smoking and five non-smokers. Paired-end RNA sequencing was performed on SOLiD instruments to a depth of >40 million reads, using linearly amplified, ribosomally depleted RNA. Sequencing libraries were prepared with both poly- dT and random hexamer primers to detect all RNA classes, including long non-coding (lncRNA), intronic and intergenic transcripts, and transcripts lacking poly- A tails, providing additional data not previously available. The study was designed to generate a database of the complete transcriptomes in brain region for gene network analyses and discovery of regulatory variants. Results Of 20,318 protein coding and 18,080 lncRNA genes annotated from GENCODE and lncipedia, 12 thousand protein coding and 2 thousand lncRNA transcripts were detectable at a conservative threshold. Of the aligned reads, 52 % were exonic, 34 % intronic and 14 % intergenic. A majority of protein coding genes (65 %) was expressed in all regions, whereas ncRNAs displayed a more restricted distribution. Profiles of RNA isoforms varied across brain regions and subjects at multiple gene loci, with neurexin 3 (NRXN3) a prominent example. Allelic RNA ratios deviating from unity were identified in > 400 genes, detectable in both protein-coding and non-coding genes, indicating the presence of cis -acting regulatory variants. Mathematical modeling was used to identify RNAs stably expressed in all brain regions (serving as potential markers for normalizing expression levels), linked to basic cellular functions. An initial analysis of differential expression analysis between smokers and nonsmokers implicated a number of genes, several previously associated with nicotine exposure. Conclusions RNA sequencing identifies distinct and consistent differences in gene expression between brain regions, with non-coding RNA displaying greater diversity between brain regions than mRNAs. Numerous RNAs exhibit robust allele selective expression, proving a means for discovery of cis -acting regulatory factors with potential clinical relevance.
Polymorphism in glutamate cysteine ligase catalytic subunit (GCLC) is associated with sulfamethoxazole-induced hypersensitivity in HIV/AIDS patients
Background Sulfamethoxazole (SMX) is a commonly used antibiotic for prevention of infectious diseases associated with HIV/AIDS and immune-compromised states. SMX-induced hypersensitivity is an idiosyncratic cutaneous drug reaction with genetic components. Here, we tested association of candidate genes involved in SMX bioactivation and antioxidant defense with SMX-induced hypersensitivity. Results Seventy seven single nucleotide polymorphisms (SNPs) from 14 candidate genes were genotyped and assessed for association with SMX-induced hypersensitivity, in a cohort of 171 HIV/AIDS patients. SNP rs761142 T > G, in glutamate cysteine ligase catalytic subunit (GCLC), was significantly associated with SMX-induced hypersensitivity, with an adjusted p value of 0.045. This result was replicated in a second cohort of 249 patients (p = 0.025). In the combined cohort, heterozygous and homozygous carriers of the minor G allele were at increased risk of developing hypersensitivity (GT vs TT, odds ratio = 2.2, 95% CL 1.4-3.7, p = 0.0014; GG vs TT, odds ratio = 3.3, 95% CL 1.6 – 6.8, p = 0.0010). Each minor allele copy increased risk of developing hypersensitivity 1.9 fold (95% CL 1.4 – 2.6, p = 0.00012). Moreover, in 91 human livers and 84 B-lymphocytes samples, SNP rs761142 homozygous G allele carriers expressed significantly less GCLC mRNA than homozygous TT carriers (p < 0.05). Conclusions rs761142 in GCLC was found to be associated with reduced GCLC mRNA expression and with SMX-induced hypersensitivity in HIV/AIDS patients. Catalyzing a critical step in glutathione biosynthesis, GCLC may play a broad role in idiosyncratic drug reactions.
A Novel In Vitro Human Granuloma Model of Sarcoidosis and Latent Tuberculosis Infection
Many aspects of pathogenic granuloma formation are poorly understood, requiring new relevant laboratory models that represent the complexity (genetics and diversity) of human disease. To address this need, we developed an in vitro model of granuloma formation using human peripheral blood mononuclear cells (PBMCs) derived from patients with active sarcoidosis, latent tuberculosis (TB) infection (LTBI), or normal healthy control subjects. PBMCs were incubated for 7 days with uncoated polystyrene beads or beads coated with purified protein derivative (PPD) or human serum albumin. In response to PPD-coated beads, PBMCs from donors with sarcoidosis and LTBI formed robust multicellular aggregates resembling granulomas, displaying a typical T-helper cell type 1 immune response, as assessed by cytokine analyses. In contrast, minimal PBMC aggregation occurred when control PBMCs were incubated with PPD-coated beads, whereas the response to uncoated beads was negligible in all groups. Sarcoidosis PBMCs responded to human serum albumin-coated beads with modest cellular aggregation and inflammatory cytokine release. Whereas the granuloma-like aggregates formed in response to PPD-coated beads were similar for sarcoidosis and LTBI, molecular profiles differed significantly. mRNA expression patterns revealed distinct pathways engaged in early granuloma formation in sarcoidosis and LTBI, and they resemble molecular patterns reported in diseased human tissues. This novel in vitro human granuloma model is proposed as a tool to investigate mechanisms of early granuloma formation and for preclinical drug discovery research of human granulomatous disorders. Clinical trial registered with www.clinicaltrials.gov (NCT01857401).
IL-13–regulated Macrophage Polarization during Granuloma Formation in an In Vitro Human Sarcoidosis Model
The mechanisms underlying abnormal granuloma formation in patients with sarcoidosis are complex and remain poorly understood. A novel in vitro human granuloma model was used to determine the molecular mechanisms of granuloma genesis in patients with sarcoidosis in response to putative disease-causing mycobacterial antigens. Peripheral blood mononuclear cells (PBMCs) from patients with active sarcoidosis and from normal, disease-free control subjects were incubated for 7 days with purified protein derivative-coated polystyrene beads. Molecular responses, as reflected by differential expression of genes, extracellular cytokine patterns, and cell surface receptor expression, were analyzed. Unbiased systems biology approaches were used to identify signaling pathways engaged during granuloma formation. Model findings were compared with human lung and mediastinal lymph node gene expression profiles. Compared with identically treated PBMCs of control subjects (n = 5), purified protein derivative-treated sarcoidosis PBMCs (n = 6) were distinguished by the formation of cellular aggregates resembling granulomas. Ingenuity Pathway Analysis of differential expression gene patterns identified molecular pathways that are primarily regulated by IL-13, which promotes alternatively activated (M2) macrophage polarization. M2 polarization was further demonstrated by immunohistochemistry performed on the in vitro sarcoidosis granuloma-like structures. IL-13-regulated gene pathways were confirmed in human sarcoidosis lung and mediastinal lymph node tissues. The in vitro human sarcoidosis granuloma model provides novel insights into early granuloma formation, particularly IL-13 regulation of molecular networks that regulate M2 macrophage polarization. M2 macrophages are predisposed to aggregation and multinucleated giant cell formation, which are characteristic features of sarcoidosis granulomas. Clinical trial registered with www.clinicaltrials.gov (NCT01857401).
Financial and Psychological Risk Attitudes Associated with Two Single Nucleotide Polymorphisms in the Nicotine Receptor (CHRNA4) Gene
With recent advances in understanding of the neuroscience of risk taking, attention is now turning to genetic factors that may contribute to individual heterogeneity in risk attitudes. In this paper we test for genetic associations with risk attitude measures derived from both the psychology and economics literature. To develop a long-term prospective study, we first evaluate both types of risk attitudes and find that the economic and psychological measures are poorly correlated, suggesting that different genetic factors may underlie human response to risk faced in different behavioral domains. We then examine polymorphisms in a spectrum of candidate genes that affect neurotransmitter systems influencing dopamine regulation or are thought to be associated with risk attitudes or impulsive disorders. Analysis of the genotyping data identified two single nucleotide polymorphisms (SNPs) in the gene encoding the alpha 4 nicotine receptor (CHRNA4, rs4603829 and rs4522666) that are significantly associated with harm avoidance, a risk attitude measurement drawn from the psychology literature. Novelty seeking, another risk attitude measure from the psychology literature, is associated with several COMT (catechol-O-methyl transferase) SNPs while economic risk attitude measures are associated with several VMAT2 (vesicular monoamine transporter) SNPs, but the significance of these associations did not withstand statistical adjustment for multiple testing and requires larger cohorts. These exploratory results provide a starting point for understanding the genetic basis of risk attitudes by considering the range of methods available for measuring risk attitudes and by searching beyond the traditional direct focus on dopamine and serotonin receptor and transporter genes.
Intronic Polymorphisms Affecting Alternative Splicing of Human Dopamine D2 Receptor Are Associated with Cocaine Abuse
The dopamine receptor D2 (encoded by DRD2 ) is implicated in susceptibility to mental disorders and cocaine abuse, but mechanisms responsible for this relationship remain uncertain. DRD2 mRNA exists in two main splice isoforms with distinct functions: D2 long (D2L) and D2 short (D2S, lacking exon 6), expressed mainly postsynaptically and presynaptically, respectively. Two intronic single-nucleotide polymorphisms (SNPs rs2283265 (intron 5) and rs1076560 (intron 6)) in high linkage disequilibrium (LD) with each other have been reported to alter D2S/D2L splicing and several behavioral traits in human subjects, such as memory processing. To assess the role of DRD2 variants in cocaine abuse, we measured levels of D2S and D2L mRNA in human brain autopsy tissues (prefrontal cortex and putamen) obtained from cocaine abusers and controls, and genotyped a panel of DRD2 SNPs (119 abusers and 95 controls). Robust effects of rs2283265 and rs1076560 on reducing formation of D2S relative to D2L were confirmed. The minor alleles of rs2283265/rs1076560 were considerably more frequent in Caucasians (18%) compared with African Americans (7%). Also, in Caucasians, rs2283265/rs1076560 minor alleles were significantly overrepresented in cocaine abusers compared with controls (rs2283265: 25 to 9%, respectively; p =0.001; OR=3.4 (1.7–7.1)). Several SNPs previously implicated in diverse clinical association studies are in high LD with rs2283265/rs1076560 and could have served as surrogate markers. Our results confirm the role of rs2283265/rs1076560 in D2 alternative splicing and support a strong role in susceptibility to cocaine abuse.
Elemental Ingredients in the Macrophage Cocktail: Role of ZIP8 in Host Response to Mycobacterium tuberculosis
Tuberculosis (TB) is a global epidemic caused by the infection of human macrophages with the world’s most deadly single bacterial pathogen, Mycobacterium tuberculosis (M.tb). M.tb resides in a phagosomal niche within macrophages, where trace element concentrations impact the immune response, bacterial metal metabolism, and bacterial survival. The manipulation of micronutrients is a critical mechanism of host defense against infection. In particular, the human zinc transporter Zrt-/Irt-like protein 8 (ZIP8), one of 14 ZIP family members, is important in the flux of divalent cations, including zinc, into the cytoplasm of macrophages. It also has been observed to exist on the membrane of cellular organelles, where it can serve as an efflux pump that transports zinc into the cytosol. ZIP8 is highly inducible in response to M.tb infection of macrophages, and we have observed its localization to the M.tb phagosome. The expression, localization, and function of ZIP8 and other divalent cation transporters within macrophages have important implications for TB prevention and dissemination and warrant further study. In particular, given the importance of zinc as an essential nutrient required for humans and M.tb, it is not yet clear whether ZIP-guided zinc transport serves as a host protective factor or, rather, is targeted by M.tb to enable its phagosomal survival.