Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
43 result(s) for "Prichard, Susan J."
Sort by:
Wildfire and climate change adaptation of western North American forests
Forest landscapes across western North America (wNA) have experienced extensive changes over the last two centuries, while climatic warming has become a global reality over the last four decades. Resulting interactions between historical increases in forested area and density and recent rapid warming, increasing insect mortality, and wildfire burned areas, are now leading to substantial abrupt landscape alterations. These outcomes are forcing forest planners and managers to identify strategies that can modify future outcomes that are ecologically and/or socially undesirable. Past forest management, including widespread harvest of fire- and climate-tolerant large old trees and old forests, fire exclusion (both Indigenous and lightning ignitions), and highly effective wildfire suppression have contributed to the current state of wNA forests. These practices were successful at meeting short-term demands, but they match poorly to modern realities. Hagmann et al. review a century of observations and multiscale, multi-proxy, research evidence that details widespread changes in forested landscapes and wildfire regimes since the influx of European colonists. Over the preceding 10 millennia, large areas of wNA were already settled and proactively managed with intentional burning by Indigenous tribes. Prichard et al. then review the research on management practices historically applied by Indigenous tribes and currently applied by some managers to intentionally manage forests for resilient conditions. They address 10 questions surrounding the application and relevance of these management practices. Here, we highlight the main findings of both papers and offer recommendations for management. We discuss progress paralysis that often occurs with strict adherence to the precautionary principle; offer insights for dealing with the common problem of irreducible uncertainty and suggestions for reframing management and policy direction; and identify key knowledge gaps and research needs.
Towards Spatially Explicit Quantification of Pre- and Postfire Fuels and Fuel Consumption from Traditional and Point Cloud Measurements
Abstract Methods to accurately estimate spatially explicit fuel consumption are needed because consumption relates directly to fire behavior, effects, and smoke emissions. Our objective was to quantify sparkleberry (Vaccinium arboretum Marshall) shrub fuels before and after six experimental prescribed fires at Fort Jackson in South Carolina. We used a novel approach to characterize shrubs non-destructively from three-dimensional (3D) point cloud data collected with a terrestrial laser scanner. The point cloud data were reduced to 0.001 m–3 voxels that were either occupied to indicate fuel presence or empty to indicate fuel absence. The density of occupied voxels was related significantly by a logarithmic function to 3D fuel bulk density samples that were destructively harvested (adjusted R2 = .32, P < .0001). Based on our findings, a survey-grade Global Navigation Satellite System may be necessary to accurately associate 3D point cloud data to 3D fuel bulk density measurements destructively collected in small (submeter) shrub plots. A recommendation for future research is to accurately geolocate and quantify the occupied volume of entire shrubs as 3D objects that can be used to train models to map shrub fuel bulk density from point cloud data binned to occupied 3D voxels.
Evaluating Close-Range Photogrammetry for 3D Understory Fuel Characterization and Biomass Prediction in Pine Forests
Understory biomass plays an important role in forests, and explicit characterizations of live and dead understory vegetation are critical for wildland fuel characterization and to link understory vegetation to ecosystem processes. Current methods to accurately model understory fuel complexity in 3D rely on expensive and often inaccessible technologies. Structure-from-motion close-range photogrammetry, in which ordinary photographs or video stills are overlaid to generate point clouds, is promising as an alternative method to generate 3D models of fuels at a fraction of the cost of more traditional field surveys. In this study, we compared the performance of close-range photogrammetry with field sampling surveys to assess the utility of this alternative technique for quantifying understory fuel structure. Using a commercially available GoPro camera, we generated 3D point cloud models from video-derived image stills of 138 sampling plots across two western ponderosa pine and two southeastern slash pine sites. We directly compared structural metrics derived from the photogrammetry to those derived from field sampling, then evaluated predictive models of biomass calibrated by means of destructive sampling. Photogrammetry-derived measures of occupied volume and fuel height showed strong agreements with field sampling (Pearson’s R = 0.81 and 0.86, respectively). While we found weak relationships between photogrammetry metrics and biomass 0 to 10 cm in height, occupied volume and a novel metric to characterize the vertical profile of vegetation produced the strongest relationships with biomass above the litter layer (i.e., >10 cm) across different fuel types (R2 = 0.55–0.76). The application of this technique has the potential to provide managers with an accessible option for inexpensive data collection and can lay the groundwork for the rapid collection of input datasets to train landscape-scale fuel models.
Crown-Level Structure and Fuel Load Characterization from Airborne and Terrestrial Laser Scanning in a Longleaf Pine (Pinus palustris Mill.) Forest Ecosystem
Airborne Laser Scanners (ALS) and Terrestrial Laser Scanners (TLS) are two lidar systems frequently used for remote sensing forested ecosystems. The aim of this study was to compare crown metrics derived from TLS, ALS, and a combination of both for describing the crown structure and fuel attributes of longleaf pine (Pinus palustris Mill.) dominated forest located at Eglin Air Force Base (AFB), Florida, USA. The study landscape was characterized by an ALS and TLS data collection along with field measurements within three large (1963 m2 each) plots in total, each one representing a distinct stand condition at Eglin AFB. Tree-level measurements included bole diameter at breast height (DBH), total height (HT), crown base height (CBH), and crown width (CW). In addition, the crown structure and fuel metrics foliage biomass (FB), stem branches biomass (SB), crown biomass (CB), and crown bulk density (CBD) were calculated using allometric equations. Canopy Height Models (CHM) were created from ALS and TLS point clouds separately and by combining them (ALS + TLS). Individual trees were extracted, and crown-level metrics were computed from the three lidar-derived datasets and used to train random forest (RF) models. The results of the individual tree detection showed successful estimation of tree count from all lidar-derived datasets, with marginal errors ranging from −4 to 3%. For all three lidar-derived datasets, the RF models accurately predicted all tree-level attributes. Overall, we found strong positive correlations between model predictions and observed values (R2 between 0.80 and 0.98), low to moderate errors (RMSE% between 4.56 and 50.99%), and low biases (between 0.03% and −2.86%). The highest R2 using ALS data was achieved predicting CBH (R2 = 0.98), while for TLS and ALS + TLS, the highest R2 was observed predicting HT, CW, and CBD (R2 = 0.94) and HT (R2 = 0.98), respectively. Relative RMSE was lowest for HT using three lidar datasets (ALS = 4.83%, TLS = 7.22%, and ALS + TLS = 4.56%). All models and datasets had similar accuracies in terms of bias (<2.0%), except for CB in ALS (−2.53%) and ALS + TLS (−2.86%), and SB in ALS + TLS data (−2.22%). These results demonstrate the usefulness of all three lidar-related methodologies and lidar modeling overall, along with lidar applicability in the estimation of crown structure and fuel attributes of longleaf pine forest ecosystems. Given that TLS measurements are less practical and more expensive, our comparison suggests that ALS measurements are still reasonable for many applications, and its usefulness is justified. This novel tree-level analysis and its respective results contribute to lidar-based planning of forest structure and fuel management.
Decision Support for Landscapes with High Fire Hazard and Competing Values at Risk: The Upper Wenatchee Pilot Project
Background: Climate change is a strong contributing factor in the lengthening and intensification of wildfire seasons, with warmer and often drier conditions associated with increasingly severe impacts. Land managers are faced with challenging decisions about how to manage forests, minimize risk of extreme wildfire, and balance competing values at risk, including communities, habitat, air quality, surface drinking water, recreation, and infrastructure. Aims: We propose that land managers use decision analytic frameworks to complement existing decision support systems such as the Interagency Fuel Treatment Decision Support System. Methods: We apply this approach to a fire-prone landscape in eastern Washington State under two proposed landscape treatment alternatives. Through stakeholder engagement, a quantitative wildfire risk assessment, and translating results into probabilistic descriptions of wildfire occurrence (burn probability) and intensity (conditional flame length), we construct a decision tree to explicitly evaluate tradeoffs of treatment alternative outcomes. Key Results: We find that while there are slightly more effective localized benefits for treatments involving thinning and prescribed burning, neither of the UWPP’s proposed alternatives are more likely to meaningfully minimize the risk of wildfire impacts at the landscape level. Conclusions: This case study demonstrates that a quantitatively informed decision analytic framework can improve land managers’ ability to effectively and explicitly evaluate tradeoffs between treatment alternatives.
Learning from wildfires: A scalable framework to evaluate treatment effects on burn severity
Interruption of frequent burning in dry forests across western North America and the continued impacts of anthropogenic climate change have resulted in increases in fire size and severity compared to historical fire regimes. Recent legislation, funding, and planning have emphasized increased implementation of mechanical thinning and prescribed burning treatments to decrease the risk of undesirable ecological and social outcomes due to fire. As wildfires and treatments continue to interact, managers require consistent approaches to evaluate treatment effectiveness at moderating burn severity. In this study, we present a repeatable, remote sensing–based, analytical framework for conducting fire‐scale assessments of treatment effectiveness that informs local management while also supporting cross‐fire comparisons. We demonstrate this framework on the 2021 Bootleg Fire in Oregon and the 2021 Schneider Springs Fire in Washington. Our framework used (1) machine learning to identify key bioclimatic, topographic, and fire weather drivers of burn severity in each fire, (2) standardized workflows to statistically sample untreated control units, and (3) spatial regression modeling to evaluate the effects of treatment type and time since treatment on burn severity. The application of our framework showed that, in both fires, recent prescribed burning treatments were the most effective at reducing burn severity relative to untreated controls. In contrast, thinning‐only treatments only produced low/moderate‐severity effects under the more moderate fire weather conditions in the Schneider Springs Fire. Our framework offers a robust approach for evaluating treatment effects on burn severity at the scale of individual fires, which can be scaled up to assess treatment effectiveness across multiple fires. As climate change brings increased uncertainty to dry forest ecosystems of western North America, our framework can support more strategic management actions to reduce wildfire risk and foster resilience.
Statewide Forest Canopy Cover Mapping of Florida Using Synergistic Integration of Spaceborne LiDAR, SAR, and Optical Imagery
Southern U.S. forests are essential for carbon storage and timber production but are increasingly impacted by natural disturbances, highlighting the need to understand their dynamics and recovery. Canopy cover is a key indicator of forest health and resilience. Advances in remote sensing, such as NASA’s GEDI spaceborne LiDAR, enable more precise mapping of canopy cover. Although GEDI provides accurate data, its limited spatial coverage restricts large-scale assessments. To address this, we combined GEDI with Synthetic Aperture Radar (SAR), and optical imagery (Sentinel-1 GRD and Landsat–Sentinel Harmonized (HLS)) data to create a comprehensive canopy cover map for Florida. Using a random forest algorithm, our model achieved an R2 of 0.69, RMSD of 0.17, and MD of 0.001, based on out-of-bag samples for internal validation. Geographic coordinates and the red spectral channel emerged as the most influential predictors. External validation with airborne laser scanning (ALS) data across three sites yielded an R2 of 0.70, RMSD of 0.29, and MD of −0.22, confirming the model’s accuracy and robustness in unseen areas. Statewide analysis showed lower canopy cover in southern versus northern Florida, with wetland forests exhibiting higher cover than upland sites. This study demonstrates the potential of integrating multiple remote sensing datasets to produce accurate vegetation maps, supporting forest management and sustainability efforts in Florida.
Big trees burning: Divergent wildfire effects on large trees in open‐ vs. closed‐canopy forests
Wildfire activity has accelerated with climate change, sparking concerns about uncharacteristic impacts on mature and old‐growth forests containing large trees. Recent assessments have documented fire‐induced losses of large‐tree habitats in the US Pacific Northwest, but key uncertainties remain regarding contemporary versus historical fire effects in different forest composition types, specific impacts on large trees within closed versus open canopies, and the role of fuel reduction treatments. Focusing on the 2021 Schneider Springs Fire, which encompassed 43,000 ha in the eastern Cascade Range of Washington and burned during a period of severe drought, this study addresses three interrelated questions: (1) Are burn severity distributions consistent with historical fire regimes in dry, moist, and cold forest types? (2) How does burn severity vary among forest structure classes, particularly large trees with open versus closed canopies? (3) How do fuel reduction treatments influence forest structure and burn severity inside and outside of treated areas? Within each forest type, burn severity proportions were similar to historical estimates, with lower overall severity in dry forests than in moist and cold forests. However, across all forest types combined, high‐severity fire affected 30% (4500 ha) of large‐tree locations with tree diameters >50 cm. In each forest type, burn severity was lower in locations with large‐open structure (<50% canopy cover) than in locations with large‐closed structure (>50% canopy cover). Burn severity also was lower inside than outside treated sites in all structure classes, and untreated large‐closed forests tended to burn at lower severity closer to treatments. These results highlight the susceptibility of dense, late‐successional forests to contemporary fires, even in events with widespread potentially beneficial effects consistent with historical fire regimes. These results also illustrate the effectiveness of treatments that shift large‐closed to large‐open structures and suggest that treatments may help mitigate fire effects in adjacent large‐closed forests. Long‐term monitoring and adaptive management will be essential for conserving critical wildlife habitats and fostering ecosystem resilience to climate change, wildfires, and other disturbances.
Fuel treatment effectiveness in the context of landform, vegetation, and large, wind-driven wildfires
Large wildfires (>50,000 ha) are becoming increasingly common in semiarid landscapes of the western United States. Although fuel reduction treatments are used to mitigate potential wildfire effects, they can be overwhelmed in wind-driven wildfire events with extreme fire behavior. We evaluated drivers of fire severity and fuel treatment effectiveness in the 2014 Carlton Complex, a record-setting complex of wildfires in north-central Washington State. Across varied topography, vegetation, and distinct fire progressions, we used a combination of simultaneous autoregression (SAR) and random forest (RF) approaches to model drivers of fire severity and evaluated how fuel treatments mitigated fire severity. Predictor variables included fuel treatment type, time since treatment, topographic indices, vegetation and fuels, and weather summarized by progression interval. We found that the two spatial regression methods are generally complementary and are instructive as a combined approach for landscape analyses of fire severity. Simultaneous autoregression improves upon traditional linear models by incorporating information about neighboring pixel burn severity, which avoids type I errors in coefficient estimates and incorrect inferences. Random forest modeling provides a flexible modeling environment capable of capturing complex interactions and nonlinearities while still accounting for spatial autocorrelation through the use of spatially explicit predictor variables. All treatment areas burned with higher proportions of moderate and highseverity fire during early fire progressions, but thin and underburn, underburn only, and past wildfires were more effective than thin-only and thin and pile burn treatments. Treatment units had much greater percentages of unburned and low severity area in later progressions that burned under milder fire weather conditions, and differences between treatments were less pronounced. Our results provide evidence that strategic placement of fuels reduction treatments can effectively reduce localized fire spread and severity even under severe fire weather. During wind-driven fire spread progressions, fuel treatments that were located on leeward slopes tended to have lower fire severity than treatments located on windward slopes. As fire and fuels managers evaluate options for increasing landscape resilience to future climate change and wildfires, strategic placement of fuel treatments may be guided by retrospective studies of past large wildfire events.
Pre-fire and post-fire surface fuel and cover measurements collected in the south-eastern United States for model evaluation and development – RxCADRE 2008, 2011 and 2012
A lack of independent, quality-assured data prevents scientists from effectively evaluating predictions and uncertainties in fire models used by land managers. This paper presents a summary of pre-fire and post-fire fuel, fuel moisture and surface cover fraction data that can be used for fire model evaluation and development. The data were collected in the south-eastern United States on 14 forest and 14 non-forest sample units associated with 6 small replicate and 10 large operational prescribed fires conducted during 2008, 2011, and 2012 as part of the Prescribed Fire Combustion and Atmospheric Dynamics Research Experiment (RxCADRE). Fuel loading and fuel consumption averaged 6.8 and 4.1Mgha-1 respectively in the forest units and 3.0 and 2.2Mgha-1 in the non-forest units. Post-fire white ash cover ranged from 1 to 28%. Data were used to evaluate two fuel consumption models, CONSUME and FOFEM, and to develop regression equations for predicting fuel consumption from ash cover. CONSUME and FOFEM produced similar predictions of total fuel consumption and were comparable with measured values. Simple linear models to predict pre-fire fuel loading and fuel consumption from post-fire white ash cover explained 46 and 59% of variation respectively.