Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
35 result(s) for "Raes, Frank"
Sort by:
Simultaneously Mitigating Near-Term Climate Change and Improving Human Health and Food Security
Tropospheric ozone and black carbon (BC) contribute to both degraded air quality and global warming. We considered ~400 emission control measures to reduce these pollutants by using current technology and experience. We identified 14 measures targeting methane and BC emissions that reduce projected global mean warming ~0.5°C by 2050. This strategy avoids 0.7 to 4.7 million annual premature deaths from outdoor air pollution and increases annual crop yields by 30 to 135 million metric tons due to ozone reductions in 2030 and beyond. Benefits of methane emissions reductions are valued at $700 to $5000 per metric ton, which is well above typical marginal abatement costs (less than $250). The selected controls target different sources and influence climate on shorter time scales than those of carbon dioxide-reduction measures. Implementing both substantially reduces the risks of crossing the 2°C threshold.
Global Air Quality and Health Co-benefits of Mitigating Near-Term Climate Change through Methane and Black Carbon Emission Controls
Background: Tropospheric ozone and black carbon (BC), a component of fine paniculate matter (PM < 2.5 urn in aerodynamic diameter; PM₂.₅), are associated with premature mortality and they disrupt global and regional climate. Objectives: We examined the air quality and health benefits of 14 specific emission control measures targeting BC and methane, an ozone precursor, that were selected because of their potential to reduce the rate of climate change over the next 20-40 years. Methods: We simulated the impacts of mitigation measures on outdoor concentrations of PM₂.₅ and ozone using two composition-climate models, and calculated associated changes in premature PM₂.₅-and ozone-related deaths using epidemiologically derived concentration-response functions. Results: We estimated that, for PM₂.₅ and ozone, respectively, fully implementing these measures could reduce global population-weighted average surface concentrations by 23-34% and 7-17% and avoid 0.6-4.4 and 0.04-0.52 million annual premature deaths globally in 2030. More than 80% of the health benefits are estimated to occur in Asia. We estimated that BC mitigation measures would achieve approximately 98% of the deaths that would be avoided if all BC and methane mitigation measures were implemented, due to reduced BC and associated reductions of nonmethane ozone precursor and organic carbon emissions as well as stronger mortality relationships for PM₂.₅ relative to ozone. Although subject to large uncertainty, these estimates and conclusions are not strongly dependent on assumptions for the concentration-response function. Conclusions: In addition to climate benefits, our findings indicate that the methane and BC emission control measures would have substantial co-benefits for air quality and public health worldwide, potentially reversing trends of increasing air pollution concentrations and mortality in Africa and South, West, and Central Asia. These projected benefits are independent of carbon dioxide mitigation measures. Benefits of BC measures are underestimated because we did not account for benefits from reduced indoor exposures and because outdoor exposure estimates were limited by model spatial resolution.
Assessing inter-sectoral climate change risks: the role of ISIMIP
The aims of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) are to provide a framework for the intercomparison of global and regional-scale risk models within and across multiple sectors and to enable coordinated multi-sectoral assessments of different risks and their aggregated effects. The overarching goal is to use the knowledge gained to support adaptation and mitigation decisions that require regional or global perspectives within the context of facilitating transformations to enable sustainable development, despite inevitable climate shifts and disruptions. ISIMIP uses community-agreed sets of scenarios with standardized climate variables and socio-economic projections as inputs for projecting future risks and associated uncertainties, within and across sectors. The results are consistent multi-model assessments of sectoral risks and opportunities that enable studies that integrate across sectors, providing support for implementation of the Paris Agreement under the United Nations Framework Convention on Climate Change.
GCM study of future climate response to aerosol pollution reductions
We use the global atmospheric GCM aerosol model ECHAM5-HAM to asses possible impacts of future air pollution mitigation strategies on climate. Air quality control strategies focus on the reduction of aerosol emissions. Here we investigate the extreme case of a maximum feasible end-of-pipe abatement of aerosols in the near term future (2030) in combination with increasing greenhouse gas (GHG) concentrations. The temperature response of increasing GHG concentrations and reduced aerosol emissions leads to a global annual mean equilibrium temperature response of 2.18 K. When aerosols are maximally abated only in the Industry and Powerplant sector, while other sectors stay with currently enforced regulations, the temperature response is 1.89 K. A maximum feasible abatement applied in the Domestic and Transport sector, while other sectors remain with the current legislation, leads to a temperature response of 1.39 K. Increasing GHG concentrations alone lead to a temperature response of 1.20 K. We also simulate 2-5% increases in global mean precipitation among all scenarios considered, and the hydrological sensitivity is found to be significantly higher for aerosols than for GHGs. Our study, thus highlights the huge potential impact of future air pollution mitigation strategies on climate and supports the need for urgent GHG emission reductions. GHG and aerosol forcings are not independent as both affect and are influenced by changes in the hydrological cycle. However, within the given range of changes in aerosol emissions and GHG concentrations considered in this study, the climate response towards increasing GHG concentrations and decreasing aerosols emissions is additive.
Effect of chemistry-aerosol-climate coupling on predictions of future climate and future levels of tropospheric ozone and aerosols
We explore the extent to which chemistry‐aerosol‐climate coupling influences predictions of future ozone and aerosols as well as future climate using the Goddard Institute for Space Studies (GISS) general circulation model II' with on‐line simulation of tropospheric ozone‐NOx‐hydrocarbon chemistry and sulfate, nitrate, ammonium, black carbon, primary organic carbon, and secondary organic carbon aerosols. Based on IPCC scenario A2, year 2100 ozone, aerosols, and climate simulated with full chemistry‐aerosol‐climate coupling are compared with those simulated from a stepwise approach. In the stepwise method year 2100 ozone and aerosols are first simulated using present‐day climate and year 2100 emissions (denoted as simulation CHEM2100sw) and year 2100 climate is then predicted using offline monthly fields of O3 and aerosols from CHEM2100sw (denoted as simulation CLIM2100sw). The fully coupled chemistry‐aerosol‐climate simulation predicts a 15% lower global burden of O3 for year 2100 than the simulation CHEM2100sw which does not account for future changes in climate. Relative to CHEM2100sw, year 2100 column burdens of all aerosols in the fully coupled simulation exhibit reductions of 10–20 mg m−2 in DJF and up to 10 mg m−2 in JJA in mid to high latitudes in the Northern Hemisphere, reductions of up to 20 mg m−2 over the eastern United States, northeastern China, and Europe in DJF, and increases of 30–50 mg m−2 over populated and biomass burning areas in JJA. As a result, relative to year 2100 climate simulated from CLIM2100sw, full chemistry‐aerosol‐climate coupling leads to a stronger net global warming by greenhouse gases, tropospheric ozone and aerosols in year 2100, with a global and annual mean surface air temperature higher by 0.42 K. For simulation of year 2100 aerosols, we conclude that it is important to consider the positive feedback between future aerosol direct radiative forcing and future aerosol concentrations; increased aerosol concentrations lead to reductions in convection and precipitation (or wet deposition of aerosols), further increasing lower tropospheric aerosol concentrations.
Atmospheric chemistry-climate feedbacks
We extend the theory of climate feedbacks to include atmospheric chemistry. A change in temperature caused by a radiative forcing will include, in general, a contribution from the chemical change that is fed back into the climate system; likewise, the change in atmospheric burdens caused by a chemical forcing will include a contribution from the associated climate change that is fed back into the chemical system. The theory includes two feedback gains, Gche and Gcli. Gche is defined as the ratio of the change in equilibrium global mean temperature owing to long‐lived greenhouse gas radiative forcing, under full climate‐chemistry coupling, to that in the absence of coupling. Gcli is defined as the ratio of the change in equilibrium mean aerosol or gas‐phase burdens owing to chemical forcing under full coupling, to that in the absence of coupling. We employ a climate‐atmospheric chemistry model based on the Goddard Institute for Space Studies (GISS) GCM II', including tropospheric gas‐phase chemistry, sulfate, nitrate, ammonium, black carbon, and organic carbon. While the model describes many essential couplings between climate and atmospheric chemistry, not all couplings are accounted for, such as indirect aerosol forcing and the role of natural dust and sea salt aerosols. Guided by the feedback theory, we perform perturbation experiments to quantify Gche and Gcli. We find that Gche for surface air temperature is essentially equal to 1.00 on a planetary scale. Regionally, Gche is estimated to be 0.80–1.30. The gains are small compared to those of the physical feedbacks in the climate system (e.g., water vapor, and cloud feedbacks). These values for Gche are robust for the specific model used, but may change when using more comprehensive climate‐atmospheric chemistry models. Our perturbation experiments do not allow one to obtain robust values for Gcli. Globally averaged, the values range from 0.99 to 1.28, depending on the chemical species, while, in areas of high pollution, Gcli can be up to 1.15 for ozone, and as large as 1.40 for total aerosol. These preliminary values indicate a significant role of climate feedbacks in the atmospheric chemistry system.
An incentive mechanism for reducing emissions from conversion of intact and non-intact forests
This paper presents a new accounting mechanism in the context of the UNFCCC issue on reducing emissions from deforestation in developing countries, including technical options for determining baselines of forest conversions. This proposal builds on the recent scientific achievements related to the estimation of tropical deforestation rates and to the assessment of 'intact' forest areas. The distinction between 'intact' and 'non intact' forests used here arises from experience with satellite-based deforestation measurements and allows accounting for carbon losses from forest degradation. The proposed accounting system would use forest area conversion rates as input data. An optimal technical solution to set baselines would be to use historical average figures during the time period from 1990 to 2005. The system introduces two different schemes to account for preserved carbon: one for countries with high forest conversion rates where the desired outcome would be a reduction in their rates, and another for countries with low rates. A 'global' baseline rate would be used to discriminate between these two country categories (high and low rates). For the hypothetical accounting period 2013-2017 and considering 72% of the total tropical forest domain for which data are available, the scenario of a 10% reduction of the high rates and of the preservation of low rates would result in approximately 1.6 billion tCO sub(2) of avoided emissions. The resulting benefits of this reduction would be shared between those high-rate countries which reduced deforestation and those low-rate countries which did not increase their deforestation over an agreed threshold (e.g., half of 'global' baseline rate).
Climate Assessment: What's Next?
Future international scientific climate change assessments should be faster, more integrated, and more directly linked to policy questions.