Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
72
result(s) for
"Rautkari, Lauri"
Sort by:
Thermal modification of wood—a review: chemical changes and hygroscopicity
by
Hill, Callum
,
Rautkari Lauri
,
Altgen, Michael
in
Crosslinking
,
Dimensional stability
,
Hydroxyl groups
2021
Thermal modification is a well-established commercial technology for improving the dimensional stability and durability of timber. Numerous reviews of thermally modified timber (TMT) are to be found in the scientific literature, but until now a review of the influence of cell wall moisture content during the modification process on the properties of TMT has been lacking. This paper reviews the current state of knowledge regarding the hygroscopic and dimensional behaviour of TMT modified under dry (cell wall at nearly zero moisture content) and wet (cell wall contains moisture) conditions. After an overview of the topic area, the review explores the literature on the thermal degradation of the polysaccharidic and lignin components of the cell wall, as well as the role of extractives. The properties of TMT modified under wet and dry conditions are compared including mass loss, hygroscopic behaviour and dimensional stability. The role of hydroxyl groups in determining the hygroscopicity is discussed, as well as the importance of considering the mobility of the cell wall polymers and crosslinking when interpreting sorption behaviour. TMT produced under wet processing conditions exhibits behaviour that changes when the wood is subjected to water leaching post-treatment, which includes further weight loss, changes in sorption behaviour and dimensional stability, but without any further change in accessible hydroxyl (OH) content. This raises serious questions regarding the role that OH groups play in sorption behaviour.
Journal Article
Humidity-dependence of the hydroxyl accessibility in Norway spruce wood
2021
This study aimed at a better understanding of the wood-water interaction, in particular the role of the hydroxyl accessibility during the humidity-dependent change in moisture content. Thin sections (80 µm) of never-dried Norway spruce sapwood that contained early- and latewood were used for the experiments. Sorption isotherm measurements confirmed the humidity-dependent moisture content changes and the effect of the first drying of the wood sections. Changes in hydroxyl accessibility were then determined by deuteration of the sections using deuterium oxide, followed by their re-protonation in water (H2O) vapor at different relative humidity: 15, 55 or 95%. The deuteration and re-protonation of the wood sections were quantified by dry mass changes as well as by changes in the OH and OD stretching vibrations in the Fourier transform infrared spectra. The results showed that the deuterated sections could be almost completely re-protonated in H2O vapor, nearly irrespective of the applied relative humidity. Therefore, changes in hydroxyl accessibility were not the driving force for the humidity-dependent changes in moisture content. However, a slow re-protonation rate at low relative humidity had to be considered. Nonetheless, a small quantity of OD groups persisted the re-protonation in H2O vapor and liquid H2O, which was not related to the drying of the wood.Graphic abstract
Journal Article
Review of the use of solid wood as an external cladding material in the built environment
2022
Timber cladding has been used since historical times as a locally available, affordable weather protection option. Nowadays, interest in timber cladding is again increasing because of ecological reasons as well as naturalistic viewpoints. This review presents a comprehensive report on timber cladding in a European context, beginning with a brief overview of the history before considering contemporary use of timber cladding for building envelopes. The basic principles of good design are considered, paying attention to timber orientation, fixings and environmental risk factors. The relationship of timber with moisture is discussed with respect to sorption behaviour, dimensional instability and design methods to minimise the negative consequences associated with wetting. The behaviour of timber cladding in fires, the effects of environmental stresses and weathering, as well as the cladding properties and the variation thereof with different types of wood and anatomical factors (including exposure of different timber faces), are examined. The review then moves on to considering different methods for protecting timber, such as the use of coatings, preservatives, fire retardants and wood modification. A brief discussion of various environmental considerations is also included, including life cycle assessment, embodied carbon and sequestered atmospheric carbon. The review finishes by making concluding remarks, providing a basis for the selection of appropriate cladding types for different environments.
Journal Article
Distribution and curing reactions of melamine formaldehyde resin in cells of impregnation-modified wood
by
Mäkelä, Mikko
,
Altgen, Daniela
,
Klüppel, André
in
639/301/1023/1025
,
639/301/54/2295
,
639/301/930/2735
2020
Wood modification improves the properties of wood as a building material by altering the wood structure on a cellular level. This study investigated how dimensional changes of wood on a macroscopic scale are related to the cellular level chemical changes on the micron level after impregnation modification with melamine formaldehyde (MF) resin under different heat curing conditions. Our results showed that the curing conditions affected the polycondensation reactions and the morphological structure of the MF resin within the cell lumen. The diffusion of the resin into the cell wall was estimated based on the triazine ring vibration of melamine in the Raman spectrum at 950–990 cm
−1
. Thereby, it was shown that macroscopic changes in wood dimensions do not provide a reliable estimate for the cell wall diffusion of the resin. The removal of cell wall constituents during the modification, which was facilitated by the alkaline pH of the impregnation solution, counterbalanced the cell wall bulking effect of the resin. This was particularly evident for wet cured samples, where diffusion of MF resin into the cell wall was observed by confocal Raman microscopy, despite a reduction in macroscopic wood dimensions.
Journal Article
Effect of curing conditions on the water vapor sorption behavior of melamine formaldehyde resin and resin-modified wood
2020
Impregnation modification of wood with melamine formaldehyde resin reduces the adverse effects caused by moisture uptake, but the underlying modes of action are not fully understood. The present study showed that it is crucial to understand the sorption behavior of the pure resin when interpreting the behavior of resin-modified wood. Furthermore, the applied heat-curing conditions had a significant effect on the moisture uptake of resin-modified wood. At the same resin loads, dry curing conditions were more effective in causing a cell wall bulking effect than wet curing conditions. This reduced the water-accessible cell wall pore volume in dry cured wood and counterbalanced the moisture uptake by the resin. Deuterium exchange measurements suggested that the occupancy of cell wall pores reduced the number of simultaneously active sorption sites. However, there was no evidence that a swelling restraint or reduced mechanical relaxation affected the water sorption of resin-modified wood significantly.
Journal Article
Hyperspectral imaging and chemometrics reveal wood acetylation on different spatial scales
by
Mäkelä Mikko
,
Rautkari Lauri
,
Altgen, Michael
in
Acetylation
,
Chemical treatment
,
Chemometrics
2021
Acetylation is a chemical treatment method commonly used to improve the hygroscopic properties of wood. Although acetylation has been industrially used for decades, its effects on the different hierarchical structures of wood are still poorly understood. In the laboratory, acetylation is generally measured gravimetrically. Weighing a sample before and after the modification procedure provides an indirect measure of the degree of acetylation within the entire sample but does not provide detailed information on the different structural regions of wood. Here, we determined acetylation of wood surfaces using hyperspectral near-infrared image regression. Our results show significant differences in the acetylation of earlywood and latewood, which suggests different durations for complete acetylation of earlywood and latewood cells. We have also illustrated our findings on the wood cell level based on the chemical differences in earlywood and latewood cell walls using cluster analysis of Raman images. These findings are an important step in understanding how chemical treatment affects the different hierarchical structures of wood on different spatial scales.
Journal Article
Quantitative prediction of moisture content distribution in acetylated wood using near-infrared hyperspectral imaging
by
Mäkelä Mikko
,
Rautkari Lauri
,
Muhammad, Awais
in
Acetylation
,
Conditioning
,
Hyperspectral imaging
2022
The uptake of moisture severely affects the properties of wood in service applications. Even local moisture content variations may be critical, but such variations are typically not detected by traditional methods to quantify the moisture content of the wood. In this study, we used near-infrared hyperspectral imaging to predict the moisture distribution on wood surfaces at the macroscale. A broad range of wood moisture contents were generated by controlling the acetylation degree of wood and the relative humidity during sample conditioning. Near-infrared image spectra were then measured from the surfaces of the conditioned wood samples, and a principal component analysis was applied to separate the useful chemical information from the spectral data. Moreover, a partial least squares regression model was developed to predict moisture content on the wood surfaces. The results show that hyperspectral near-infrared image regression can accurately predict the variations in moisture content across wood surfaces. In addition to sample-to-sample variation in moisture content, our results also revealed differences in the moisture content between earlywood and latewood in acetylated wood. This was in line with our recent studies where we found that thin-walled earlywood cells are acetylated faster than the thicker latewood cells, which decreases the moisture uptake during the conditioning. Dynamic vapor sorption isotherms validated the differences in moisture content within earlywood and latewood cells. Overall, our results demonstrate the capabilities of hyperspectral imaging for process analytics in the modern wood industry.
Journal Article
Deswelling of microfibril bundles in drying wood studied by small-angle neutron scattering and molecular dynamics
2021
Structural changes of cellulose microfibrils and microfibril bundles in unmodified spruce cell wall due to drying in air were investigated using time-resolved small-angle neutron scattering (SANS). The scattering analysis was supported with dynamic vapor sorption (DVS) measurements to quantify the macroscopic drying kinetics. Molecular dynamics (MD) simulations were carried out to aid in understanding the molecular-level wood-water interactions during drying. Both SANS experiments and simulations support the notion that individual cellulose microfibrils remain relatively unaffected by drying. There is, however, a significant decrease in fibril-to-fibril distances in microfibril bundles. Both scattering and DVS experiments showed two distinct drying regions: constant-rate drying and falling-rate drying. This was also supported by the MD simulation results. The shrinking of the fibril bundles starts at the boundary of these two regions, which is accompanied by a strong decrease in the diffusivity of water in between the microfibrils.Graphic abstract
Journal Article
Strength and Water Interactions of Cellulose I Filaments Wet-Spun from Cellulose Nanofibril Hydrogels
by
Papageorgiou, Anastassios C.
,
Rautkari, Lauri
,
Lundahl, Meri J.
in
639/301/1023/303
,
639/301/54/989
,
639/925/357/551
2016
Hydrogels comprising cellulose nanofibrils (CNF) were used in the synthesis of continuous filaments via wet-spinning. Hydrogel viscosity and spinnability, as well as orientation and strength of the spun filaments, were found to be strongly affected by the osmotic pressure as determined by CNF surface charge and solid fraction in the spinning dope. The tensile strength, Young’s modulus and degree of orientation (wide-angle X-ray scattering, WAXS) of filaments produced without drawing were 297 MPa, 21 GPa and 83%, respectively, which are remarkable values. A thorough investigation of the interactions with water using dynamic vapour sorption (DVS) experiments revealed the role of sorption sites in the stability of the filaments in wet conditions. DVS analysis during cycles of relative humidity (RH) between 0 and 95% revealed major differences in water uptake by the filaments spun from hydrogels of different charge density (CNF and TEMPO-oxidised CNF). It is concluded that the mechanical performance of filaments in the presence of water deteriorates drastically by the same factors that facilitate fibril alignment and, consequently, enhance dry strength. For the most oriented filaments, the maximum water vapour sorption at 95% RH was 39% based on dry weight.
Journal Article
Multiscale interface engineering enables strong and water resistant wood bonding
2025
The growing use of timber in construction has created an urgent need for high-performing engineered wood. Laminating timber facilitates production of structural components, but strong interfacial bonding is essential for engineered wood to outperform solid wood. Here we introduce a method for achieving strong wood bonding using an ionic liquid-dissolved cellulose solution. At the bonding interface, the dissolved cellulose fills the lumina and entangles with the wood cell wall, forming a dense cellulose network interconnecting with wood upon regeneration in water. Concurrent hot-pressing forms a permanently interlocked structure of wood cells. The multiscale bonded interface is water resistant with a shear strength over 20 MPa, nearly twice that of solid wood. This work presents an eco-friendly, high-performing wood bonding mechanism with promising applications in engineered wood products.
Laminating timber facilitates production of structural components for high-performance engineered wood, but strong interfacial bonding is essential for engineered wood to outperform solid wood. Here the authors introduce a method for achieving strong and water-resistant wood bonding using an ionic liquid-dissolved cellulose solution.
Journal Article