Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
93
result(s) for
"Scheer, Frank A. J. L."
Sort by:
Ghrelin is impacted by the endogenous circadian system and by circadian misalignment in humans
by
Caputo, Rosanna
,
Qian, Jingyi
,
Frank A J L Scheer
in
Appetite
,
Circadian rhythm
,
Circadian rhythms
2019
The human circadian system regulates hunger independently of behavioral factors, resulting in a trough in the biological morning and a peak in the biological evening. However, the role of the only known orexigenic hormone, ghrelin, in this circadian rhythm is unknown. Furthermore, although shift work is an obesity risk factor, the separate effects of the endogenous circadian system, the behavioral cycle, and circadian misalignment on ghrelin has not been systematically studied. Here we show—by using two 8-day laboratory protocols—that circulating active (acylated) ghrelin levels are significantly impacted by endogenous circadian phase in healthy adults. Active ghrelin levels were higher in the biological evening than the biological morning (fasting +15.1%, P = 0.0001; postprandial +10.4%, P = 0.0002), consistent with the circadian variation in hunger (P = 0.028). Moreover, circadian misalignment itself (12-h behavioral cycle inversion) increased postprandial active ghrelin levels (+5.4%; P = 0.04). While not significantly influencing hunger (P > 0.08), circadian misalignment increased appetite for energy-dense foods (all P < 0.05). Our results provide possible mechanisms for the endogenous circadian rhythm in hunger, as well as for the increased risk of obesity among shift workers.
Journal Article
Circadian clocks and insulin resistance
by
Kalsbeek, Andries
,
Schrauwen, Patrick
,
la Fleur, Susanne E
in
Adipose tissue
,
Circadian rhythm
,
Circadian rhythms
2019
Insulin resistance is a main determinant in the development of type 2 diabetes mellitus and a major cause of morbidity and mortality. The circadian timing system consists of a central brain clock in the hypothalamic suprachiasmatic nucleus and various peripheral tissue clocks. The circadian timing system is responsible for the coordination of many daily processes, including the daily rhythm in human glucose metabolism. The central clock regulates food intake, energy expenditure and whole-body insulin sensitivity, and these actions are further fine-tuned by local peripheral clocks. For instance, the peripheral clock in the gut regulates glucose absorption, peripheral clocks in muscle, adipose tissue and liver regulate local insulin sensitivity, and the peripheral clock in the pancreas regulates insulin secretion. Misalignment between different components of the circadian timing system and daily rhythms of sleep–wake behaviour or food intake as a result of genetic, environmental or behavioural factors might be an important contributor to the development of insulin resistance. Specifically, clock gene mutations, exposure to artificial light–dark cycles, disturbed sleep, shift work and social jet lag are factors that might contribute to circadian disruption. Here, we review the physiological links between circadian clocks, glucose metabolism and insulin sensitivity, and present current evidence for a relationship between circadian disruption and insulin resistance. We conclude by proposing several strategies that aim to use chronobiological knowledge to improve human metabolic health.
Journal Article
Genetics of circadian rhythms and sleep in human health and disease
by
Saxena, Richa
,
Mignot, Emmanuel
,
Lane, Jacqueline M
in
Chronic illnesses
,
Circadian rhythm
,
Circadian rhythms
2023
Circadian rhythms and sleep are fundamental biological processes integral to human health. Their disruption is associated with detrimental physiological consequences, including cognitive, metabolic, cardiovascular and immunological dysfunctions. Yet many of the molecular underpinnings of sleep regulation in health and disease have remained elusive. Given the moderate heritability of circadian and sleep traits, genetics offers an opportunity that complements insights from model organism studies to advance our fundamental molecular understanding of human circadian and sleep physiology and linked chronic disease biology. Here, we review recent discoveries of the genetics of circadian and sleep physiology and disorders with a focus on those that reveal causal contributions to complex diseases.The circadian system and sleep physiology are linked to myriad biological processes, the disruption of which is detrimental to human health. Here, the authors review insights from genetic studies of human circadian and sleep phenotypes and disorders, with a focus on those with causal contributions to other complex diseases.
Journal Article
Impact of circadian disruption on glucose metabolism: implications for type 2 diabetes
2020
The circadian system generates endogenous rhythms of approximately 24 h, the synchronisation of which are vital for healthy bodily function. The timing of many physiological processes, including glucose metabolism, are coordinated by the circadian system, and circadian disruptions that desynchronise or misalign these rhythms can result in adverse health outcomes. In this review, we cover the role of the circadian system and its disruption in glucose metabolism in healthy individuals and individuals with type 2 diabetes mellitus. We begin by defining circadian rhythms and circadian disruption and then we provide an overview of circadian regulation of glucose metabolism. We next discuss the impact of circadian disruptions on glucose control and type 2 diabetes. Given the concurrent high prevalence of type 2 diabetes and circadian disruption, understanding the mechanisms underlying the impact of circadian disruption on glucose metabolism may aid in improving glycaemic control.
Journal Article
CIRCUST: A novel methodology for temporal order reconstruction of molecular rhythms; validation and application towards a daily rhythm gene expression atlas in humans
by
Saxena, Richa
,
Rueda, Cristina
,
Scheer, Frank A. J. L.
in
Analysis
,
Biological activity
,
Biology and Life Sciences
2023
The circadian system drives near-24-h oscillations in behaviors and biological processes. The underlying core molecular clock regulates the expression of other genes, and it has been shown that the expression of more than 50 percent of genes in mammals displays 24-h rhythmic patterns, with the specific genes that cycle varying from one tissue to another. Determining rhythmic gene expression patterns in human tissues sampled as single timepoints has several challenges, including the reconstruction of temporal order of highly noisy data. Previous methodologies have attempted to address these challenges in one or a small number of tissues for which rhythmic gene evolutionary conservation is assumed to be preserved. Here we introduce CIRCUST, a novel CIRCular-robUST methodology for analyzing molecular rhythms, that relies on circular statistics, is robust against noise, and requires fewer assumptions than existing methodologies. Next, we validated the method against four controlled experiments in which sampling times were known, and finally, CIRCUST was applied to 34 tissues from the Genotype-Tissue Expression (GTEx) dataset with the aim towards building a comprehensive daily rhythm gene expression atlas in humans. The validation and application shown here indicate that CIRCUST provides a flexible framework to formulate and solve the issues related to the analysis of molecular rhythms in human tissues. CIRCUST methodology is publicly available at
https://github.com/yolandalago/CIRCUST/
.
Journal Article
Effects of circadian disruption on the cardiometabolic system
by
Rüger, Melanie
,
Scheer, Frank A. J. L
in
Animals
,
Cardiovascular System - metabolism
,
Cardiovascular System - radiation effects
2009
The presence of day-night variations in cardiovascular and metabolic functioning is well known. However, only recently it has been shown that cardiovascular and metabolic processes are not only affected by the behavioral sleep/wake cycle but are partly under direct control of the master circadian pacemaker located in the suprachiasmatic nucleus (SCN). Heart rate, cardiac autonomic activity, glucose metabolism and leptin—involved in appetite control—all show circadian variation (i.e., under constant behavioral and environmental conditions). This knowledge of behavioral vs. circadian modulation of cardiometabolic function is of clinical relevance given the morning peak in adverse cardiovascular incidents observed in epidemiological studies and given the increased risk for the development of diabetes, obesity, and cardiovascular disease in shift workers. We will review the evidence for circadian control of cardiometabolic functioning, as well its sensitivity to light and melatonin, and discuss potential implication for therapy.
Journal Article
Effects of circadian misalignment on cognition in chronic shift workers
by
Chellappa, Sarah L.
,
Morris, Christopher J.
,
Scheer, Frank A. J. L.
in
631/378/1385
,
692/308/575
,
Attention
2019
Shift work is associated with increased human operational errors, presumably due to the circadian timing system that inhibits optimal cognitive function during the night. Circadian misalignment, which is the misalignment between the circadian pacemaker and behavioral/environmental cycles, impairs cognitive performance in non-shift workers. However, it remains uncertain whether the adverse cognitive consequences of circadian misalignment are also observed in chronic shift workers. Thus, we investigated the effects of circadian misalignment on cognitive performance in chronic shift workers. Using a randomized, cross-over design that simulated day shift work (circadian alignment) and night shift work (circadian misalignment), we show that circadian misalignment increases cognitive vulnerability on sustained attention, information processing and visual-motor performance, particularly after more than 10 hours of scheduled wakefulness. Furthermore, their increased levels of subjective sleepiness and their decreased sleep efficiency were significantly associated with impaired sustained attention and visual-motor performance. Our data suggest that circadian misalignment dramatically deteriorates cognitive performance in chronic shift workers under circadian misalignment. This increased cognitive vulnerability may have important safety consequences, given the increasing number of nighttime jobs that crucially rely on the availability of cognitive resources.
Journal Article
Daily circadian misalignment impairs human cognitive performance task-dependently
by
Chellappa, Sarah L.
,
Morris, Christopher J.
,
Scheer, Frank A. J. L.
in
631/378/1385/2640
,
692/308/575
,
Attention
2018
Shift work increases the risk for human errors, such that drowsiness due to shift work has contributed to major industrial disasters, including Space Shuttle Challenger, Chernobyl and Alaska Oil Spill disasters, with extraordinary socio-economical costs. Overnight operations pose a challenge because our circadian biology inhibits cognitive performance at night. Yet how the circadian system modulates cognition over multiple days under realistic shift work conditions remains to be established. Importantly, because task-specific cognitive brain regions show different 24-h circadian dynamics, we hypothesize that circadian misalignment impacts cognition task-dependently. Using a biologically-driven paradigm mimicking night shift work, with a randomized, cross-over design, we show that misalignment between the circadian pacemaker and behavioral/environmental cycles increases cognitive vulnerability on sustained attention, cognitive throughput, information processing and visual-motor performance over multiple days, compared to circadian alignment (day shifts). Circadian misalignment effects are task-dependent: while they acutely impair sustained attention with recovery after 3-days, they progressively hinder daily learning. Individuals felt sleepier during circadian misalignment, but they did not rate their performance as worse. Furthermore, circadian misalignment effects on sustained attention depended on prior sleep history. Collectively, daily circadian misalignment may provide an important biological framework for developing countermeasures against adverse cognitive effects in shift workers.
Journal Article
Meal timing and obesity: interactions with macronutrient intake and chronotype
2019
BackgroundTiming of dietary intake may play a role in obesity. However, previous studies produced mixed findings possibly due to inconsistent approaches to characterize meal timing and not taking into account chronotype and macronutrients. To address the aforementioned limitations, we have defined meal timing relative to sleep/wake timing, investigated the relationship between meal timing and body mass index (BMI) dependent on chronotype, and examined the associations.MethodsBMI, chronotype, and dietary intakes were measured in 872 middle-to-older-aged adults by six 24-h dietary recalls in 1 year. We defined four time windows of intake relative to sleep timing: morning (within 2 h after getting out of bed), night (within 2 h before bedtime), and two midday periods in between (split by the midpoint of the waking period).ResultsA higher percent of total daily energy intake consumed during the morning window was associated with lower odds of being overweight or obese (odds ratio (95% confidence intervals), 0.53 (0.31, 0.89)). This association was stronger in people with an earlier chronotype (0.32 (0.16, 0.66)). A higher percent of total daily energy intake consumed during the night window was associated with higher odds of being overweight or obese (1.82 (1.07, 3.08)), particularly in people with a later chronotype (4.94 (1.61, 15.14)). These associations were stronger for the intakes of carbohydrates and protein than for fat intake.ConclusionOur study suggests that higher dietary consumption after waking up and lower consumption close to bedtime associate with lower BMI, but the relationship differs by chronotype. Furthermore, the data demonstrate a clear relationship between the timing of carbohydrate and protein intake and obesity. Our findings highlight the importance of considering timing of intake relative to sleep timing when studying the associations of meal timing with obesity and metabolic health.
Journal Article
Plasticity of the Intrinsic Period of the Human Circadian Timing System
by
Wright, Kenneth P.
,
Scheer, Frank A. J. L.
,
Czeisler, Charles A.
in
Adult
,
Analysis
,
Astronauts
2007
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light ( approximately 450 lux; approximately 1.2 W/m(2)) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration.
Journal Article