Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
328
result(s) for
"Schmidt, Brian L."
Sort by:
Piphillin: Improved Prediction of Metagenomic Content by Direct Inference from Human Microbiomes
2016
Functional analysis of a clinical microbiome facilitates the elucidation of mechanisms by which microbiome perturbation can cause a phenotypic change in the patient. The direct approach for the analysis of the functional capacity of the microbiome is via shotgun metagenomics. An inexpensive method to estimate the functional capacity of a microbial community is through collecting 16S rRNA gene profiles then indirectly inferring the abundance of functional genes. This inference approach has been implemented in the PICRUSt and Tax4Fun software tools. However, those tools have important limitations since they rely on outdated functional databases and uncertain phylogenetic trees and require very specific data pre-processing protocols. Here we introduce Piphillin, a straightforward algorithm independent of any proposed phylogenetic tree, leveraging contemporary functional databases and not obliged to any singular data pre-processing protocol. When all three inference tools were evaluated against actual shotgun metagenomics, Piphillin was superior in predicting gene composition in human clinical samples compared to both PICRUSt and Tax4Fun (p<0.01 and p<0.001, respectively) and Piphillin's ability to predict disease associations with specific gene orthologs exhibited a 15% increase in balanced accuracy compared to PICRUSt. From laboratory animal samples, no performance advantage was observed for any one of the tools over the others and for environmental samples all produced unsatisfactory predictions. Our results demonstrate that functional inference using the direct method implemented in Piphillin is preferable for clinical biospecimens. Piphillin is publicly available for academic use at http://secondgenome.com/Piphillin.
Journal Article
Changes in Abundance of Oral Microbiota Associated with Oral Cancer
2014
Individual bacteria and shifts in the composition of the microbiome have been associated with human diseases including cancer. To investigate changes in the microbiome associated with oral cancers, we profiled cancers and anatomically matched contralateral normal tissue from the same patient by sequencing 16S rDNA hypervariable region amplicons. In cancer samples from both a discovery and a subsequent confirmation cohort, abundance of Firmicutes (especially Streptococcus) and Actinobacteria (especially Rothia) was significantly decreased relative to contralateral normal samples from the same patient. Significant decreases in abundance of these phyla were observed for pre-cancers, but not when comparing samples from contralateral sites (tongue and floor of mouth) from healthy individuals. Weighted UniFrac principal coordinates analysis based on 12 taxa separated most cancers from other samples with greatest separation of node positive cases. These studies begin to develop a framework for exploiting the oral microbiome for monitoring oral cancer development, progression and recurrence.
Journal Article
Schwann cell endosome CGRP signals elicit periorbital mechanical allodynia in mice
2022
Efficacy of monoclonal antibodies against calcitonin gene-related peptide (CGRP) or its receptor (calcitonin receptor-like receptor/receptor activity modifying protein-1, CLR/RAMP1) implicates peripherally-released CGRP in migraine pain. However, the site and mechanism of CGRP-evoked peripheral pain remain unclear. By cell-selective RAMP1 gene deletion, we reveal that CGRP released from mouse cutaneous trigeminal fibers targets CLR/RAMP1 on surrounding Schwann cells to evoke periorbital mechanical allodynia. CLR/RAMP1 activation in human and mouse Schwann cells generates long-lasting signals from endosomes that evoke cAMP-dependent formation of NO. NO, by gating Schwann cell transient receptor potential ankyrin 1 (TRPA1), releases ROS, which in a feed-forward manner sustain allodynia via nociceptor TRPA1. When encapsulated into nanoparticles that release cargo in acidified endosomes, a CLR/RAMP1 antagonist provides superior inhibition of CGRP signaling and allodynia in mice. Our data suggest that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
The mechanism of CGRP-evoked peripheral pain is unclear. Here, the authors show that the CGRP-mediated neuronal/Schwann cell pathway mediates allodynia associated with neurogenic inflammation, contributing to the algesic action of CGRP in mice.
Journal Article
NEUROPILIN-1 INHIBITION SUPPRESSES NERVE-GROWTH FACTOR SIGNALING AND NOCICEPTION IN PAIN MODELS
2025
Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain, yet failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a coreceptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 was coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppressed NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibited NGF/TrkA signaling, whereas NRP1 overexpression enhanced signaling. NGF bound NRP1 with high affinity and interacted with and chaperoned TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggested that the C-terminal R/KXXR/K NGF motif interacts with the extracellular \"b\" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G α interacting protein C-terminus 1 (GIPC1), which scaffolds NRP1 and TrkA to myosin VI, colocalized in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogated NGF-evoked excitation of nociceptors and pain-like behavior. Thus, NRP1 is a nociceptor-enriched coreceptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited nonopioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain.
Journal Article
Lymphatic and Angiogenic Candidate Genes Predict the Development of Secondary Lymphedema following Breast Cancer Surgery
2013
The purposes of this study were to evaluate for differences in phenotypic and genotypic characteristics in women who did and did not develop lymphedema (LE) following breast cancer treatment. Breast cancer patients completed a number of self-report questionnaires. LE was evaluated using bioimpedance spectroscopy. Genotyping was done using a custom genotyping array. No differences were found between patients with (n = 155) and without LE (n = 387) for the majority of the demographic and clinical characteristics. Patients with LE had a significantly higher body mass index, more advanced disease and a higher number of lymph nodes removed. Genetic associations were identified for four genes (i.e., lymphocyte cytosolic protein 2 (rs315721), neuropilin-2 (rs849530), protein tyrosine kinase (rs158689), vascular cell adhesion molecule 1 (rs3176861)) and three haplotypes (i.e., Forkhead box protein C2 (haplotype A03), neuropilin-2 (haplotype F03), vascular endothelial growth factor-C (haplotype B03)) involved in lymphangiogensis and angiogenesis. These genetic associations suggest a role for a number of lymphatic and angiogenic genes in the development of LE following breast cancer treatment.
Journal Article
Oral cancer induced TRPV1 sensitization is mediated by PAR2 signaling in primary afferent neurons innervating the cancer microenvironment
by
Dolan, John C.
,
Liu, Cheng Z.
,
Williams, Hannah
in
4-Nitroquinoline 1-oxide
,
631/378/2620/410
,
631/67/1536
2022
Oral cancer patients report sensitivity to spicy foods and liquids. The mechanism responsible for chemosensitivity induced by oral cancer is not known. We simulate oral cancer-induced chemosensitivity in a xenograft oral cancer mouse model using two-bottle choice drinking and conditioned place aversion assays. An anatomic basis of chemosensitivity is shown in increased expression of TRPV1 in anatomically relevant trigeminal ganglion (TG) neurons in both the xenograft and a carcinogen (4-nitroquinoline 1-oxide)-induced oral cancer mouse models. The percent of retrograde labeled TG neurons that respond to TRPV1 agonist, capsaicin, is increased along with the magnitude of response as measured by calcium influx, in neurons from the cancer models. To address the possible mechanism of TRPV1 sensitivity in tongue afferents, we study the role of PAR
2
, which can sensitize the TRPV1 channel. We show co-expression of TRPV1 and PAR
2
on tongue afferents and using a conditioned place aversion assay, demonstrate that PAR
2
mediates oral cancer-induced, TRPV1-evoked sensitivity in an oral cancer mouse model. The findings provide insight into oral cancer-mediated chemosensitivity.
Journal Article
Targeting prostaglandin E2 receptor 2 in Schwann cells inhibits inflammatory pain but not inflammation
2025
Analgesia by non-steroidal anti-inflammatory drugs (NSAIDs) is ascribed to inhibition of prostaglandin (PG) biosynthesis and ensuing inflammation. However, NSAIDs have life-threatening side effects, and inhibition of inflammation delays pain resolution. Decoupling the mechanisms underlying PG-evoked pain
vs
. protective inflammation would facilitate pain treatment. Herein, we reveal that selective silencing of the PGE
2
receptor 2 (EP2) in Schwann cells via adeno-associated viral vectors abrogates the indomethacin-sensitive component of pain-like responses in mice elicited by inflammatory stimuli without affecting inflammation. In human Schwann cells and in mice, EP2 activation and optogenetic stimulation of adenylyl cyclase evokes a plasma membrane-compartmentalized cyclic adenosine monophosphate (cAMP) signal that, via A-kinase anchor protein-associated protein kinase A, sustains inflammatory pain-like responses, but does not delay their resolution. Thus, an unforeseen and druggable EP2 receptor in Schwann cells, via specific cAMP nanodomains, encodes PGE
2
-mediated persistent inflammatory pain but not PG-dependent protective inflammation.
Non-steroidal anti-inflammatory drugs (NSAIDs) are known to alleviate pain by reducing inflammation. To the contrary, here, the authors show that selective inhibition of the prostaglandin E2 receptor (EP2) in Schwann cells eliminates pain without disrupting the protective and healing functions of inflammation.
Journal Article
Oral cancer patients experience mechanical and chemical sensitivity at the site of the cancer
by
Albertson, Donna G.
,
Wu, Angie K.
,
Janal, Malvin N.
in
Biomedical and Life Sciences
,
Biomedicine
,
Cancer pain
2022
Introduction
Oral cancer patients suffer severe chronic and mechanically-induced pain at the site of the cancer. Our clinical experience is that oral cancer patients report new sensitivity to spicy foods. We hypothesized that in cancer patients, mechanical and chemical sensitivity would be greater when measured at the cancer site compared to a contralateral matched normal site.
Methods
We determined mechanical pain thresholds (MPT) on the right and left sides of the tongue of 11 healthy subjects, and at the cancer and contralateral matched normal site in 11 oral cancer patients in response to von Frey filaments in the range of 0.008 to 300 g (normally not reported as painful). We evaluated chemical sensitivity in 13 healthy subjects and seven cancer patients, who rated spiciness/pain on a visual analog scale in response to exposure to six paper strips impregnated with capsaicin (0–10 mM).
Results
Mechanical detection thresholds (MDT) were recorded for healthy subjects, but not MPTs. By contrast, MPTs were measured at the site of the cancer in oral cancer patients (7/11 patients). No MPTs were measured at the cancer patients’ contralateral matched normal sites. Measured MPTs were correlated with patients’ responses to the University of California Oral Cancer Pain Questionnaire. Capsaicin sensitivity at the site of the cancer was evident in cancer patients by a leftward shift of the cancer site capsaicin dose-response curve compared to that of the patient’s contralateral matched normal site. We detected no difference in capsaicin sensitivity on the right and left sides of tongues of healthy subjects.
Conclusions
Mechanical and chemical sensitivity testing was well tolerated by the majority of oral cancer patients. Sensitivity is greater at the site of the cancer than at a contralateral matched normal site.
Journal Article
Decitabine Rescues Cisplatin Resistance in Head and Neck Squamous Cell Carcinoma
2014
Cisplatin resistance in head and neck squamous cell carcinoma (HNSCC) reduces survival. In this study we hypothesized that methylation of key genes mediates cisplatin resistance. We determined whether a demethylating drug, decitabine, could augment the anti-proliferative and apoptotic effects of cisplatin on SCC-25/CP, a cisplatin-resistant tongue SCC cell line. We showed that decitabine treatment restored cisplatin sensitivity in SCC-25/CP and significantly reduced the cisplatin dose required to induce apoptosis. We then created a xenograft model with SCC-25/CP and determined that decitabine and cisplatin combination treatment resulted in significantly reduced tumor growth and mechanical allodynia compared to control. To establish a gene classifier we quantified methylation in cancer tissue of cisplatin-sensitive and cisplatin-resistant HNSCC patients. Cisplatin-sensitive and cisplatin-resistant patient tumors had distinct methylation profiles. When we quantified methylation and expression of genes in the classifier in HNSCC cells in vitro, we showed that decitabine treatment of cisplatin-resistant HNSCC cells reversed methylation and gene expression toward a cisplatin-sensitive profile. The study provides direct evidence that decitabine restores cisplatin sensitivity in in vitro and in vivo models of HNSCC. Combination treatment of cisplatin and decitabine significantly reduces HNSCC growth and HNSCC pain. Furthermore, gene methylation could be used as a biomarker of cisplatin-resistance.
Journal Article
Neutrophil-Mediated Endogenous Analgesia Contributes to Sex Differences in Oral Cancer Pain
2018
The incidence of oral cancer in the United States is increasing, especially in young people and women. Patients with oral cancer report severe functional pain. Using a patient cohort accrued through the New York University Oral Cancer Center and immune-competent mouse models, we identify a sex difference in the prevalence and severity of oral cancer pain. A neutrophil-mediated endogenous analgesic mechanism is present in male mice with oral cancer. Local naloxone treatment potentiates cancer mediator-induced orofacial nociceptive behavior in male mice only. Tongues from male mice with oral cancer have significantly more infiltrating neutrophils compared to female mice with oral cancer. Neutrophils isolated from the cancer-induced inflammatory microenvironment express beta-endorphin and met-enkephalin. Furthermore, neutrophil depletion results in nociceptive behavior in male mice. These data suggest a role for sex-specific, immune cell-mediated endogenous analgesia in the treatment of oral cancer pain.
Journal Article