Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Shin, Seung-Heon"
Sort by:
Immunopathologic Role of Eosinophils in Eosinophilic Chronic Rhinosinusitis
Chronic rhinosinusitis (CRS) is a diverse chronic inflammatory disease of the sinonasal mucosa. CRS manifests itself in a variety of clinical and immunologic patterns. The histological hallmark of eosinophilic CRS (ECRS) is eosinophil infiltration. ECRS is associated with severe disease severity, increased comorbidity, and a higher recurrence rate, as well as thick mucus production. Eosinophils play an important role in these ECRS clinical characteristics. Eosinophils are multipotential effector cells that contribute to host defense against nonphagocytable pathogens, as well as allergic and nonallergic inflammatory diseases. Eosinophils interact with Staphylococcus aureus, Staphylococcal enterotoxin B, and fungi, all of which were found in the tissue of CRS patients. These interactions activate Th2 immune responses in the sinonasal mucosa and exacerbate local inflammation. Activated eosinophils were discovered not only in the tissue but also in the sinonasal cavity secretion. Eosinophil extracellular traps (EETs) are extracellular microbes trapping and killing structures found in the secretions of CRS patients with intact granule protein and filamentous chromatic structures. At the same time, EET has a negative effect by causing an epithelial barrier defect. Eosinophils also influence the local tissue microenvironment by exchanging signals with other immune cells and structural cells. As a result, eosinophils are multifaceted leukocytes that contribute to various physiologic and pathologic processes of the upper respiratory mucosal immune system. The goal of this review is to summarize recent research on the immunopathologic properties and immunologic role of eosinophils in CRS.
Comparative analysis of clinical characteristics of odontogenic maxillary sinus diseases associated with or without dental implants
Unilateral maxillary sinusitis and maxillary fungal ball (FB) have diverse etiologies. Maxillary sinus diseases are predominantly associated with odontogenic origins. This study aimed to investigate and compare the clinical characteristics of odontogenic maxillary sinus diseases between implant-related and implant-non-related etiologies. This retrospective study enrolled 195 patients with odontogenic maxillary sinus diseases undergoing endoscopic sinus surgery. The patients were categorized into four groups: implant-related and -non-related odontogenic sinusitis and implant-related and -non-related odontogenic FB. The study analyzed sinonasal symptoms, SNOT-22 scores, comorbidities, social history, allergic status, and olfactory function. Computed tomography scans were performed to assess dental disease, implant numbers, implant protrusion depth, and sinus inflammation degree. Smoking and alcohol consumption were significant risk factors for odontogenic maxillary sinusitis development, whereas hypertension and older age were associated with an increased odontogenic FB risk. However, the four groups demonstrated no statistically significant differences in terms of Lund-Mackay scores, SNOT-22 scores, olfactory function tests, allergic status, or comorbidities. Periodontitis and the length of the intramaxillary implant protrusion were important contributing factors in odontogenic maxillary sinus diseases. Odontogenic maxillary sinusitis and odontogenic FB exhibit distinct pathophysiological and clinical characteristics; therefore, these conditions need to be thoroughly understood for effective patient management.
Immunopathologic Role of Fungi in Chronic Rhinosinusitis
Airborne fungi are ubiquitous in the environment and are commonly associated with airway inflammatory diseases. The innate immune defense system eliminates most inhaled fungi. However, some influence the development of chronic rhinosinusitis. Fungal CRS is thought of as not a common disease, and its incidence increases over time. Fungi are present in CRS patients and in healthy sinonasal mucosa. Although the immunological mechanisms have not been entirely explained, CRS patients may exhibit different immune responses than healthy people against airborne fungi. Fungi can induce Th1 and Th2 immune responses. In CRS, Th2-related immune responses against fungi are associated with pattern recognition receptors in nasal epithelial cells, the production of inflammatory cytokines and chemokines from nasal epithelial cells, and interaction with innate type 2 cells, lymphocytes, and inflammatory cells. Fungi also interact with neutrophils and eosinophils and induce neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs). NETs and EETs are associated with antifungal properties and aggravation of chronic inflammation in CRS by releasing intracellular granule proteins. Fungal and bacterial biofilms are commonly found in CRS and may support chronic and recalcitrant CRS infection. The fungal–bacterial interaction in the sinonasal mucosa could affect the survival and virulence of fungi and bacteria and host immune responses. The interaction between the mycobiome and microbiome may also influence the host immune response, impacting local inflammation and chronicity. Although the exact immunopathologic role of fungi in the pathogenesis of CRS is not completely understood, they contribute to the development of sinonasal inflammatory responses in CRS.
Asian Sand Dust Particles Enhance the Development of Aspergillus fumigatus Biofilm on Nasal Epithelial Cells
Background: Asian sand dust (ASD) and Aspergillus fumigatus are known risk factors for airway mucosal inflammatory diseases. Bacterial and fungal biofilms commonly coexist in chronic rhinosinusitis and fungus balls. We evaluated the effects of ASD on the development of A. fumigatus biofilm formation on nasal epithelial cells. Methods: Primary nasal epithelial cells were cultured with A. fumigatus conidia with or without ASD for 72 h. The production of interleukin (IL)-6, IL-8, and transforming growth factor (TGF)-β1 from nasal epithelial cells was determined by the enzyme-linked immunosorbent assay. The effects of ASD on A. fumigatus biofilm formation were determined using crystal violet, concanavalin A, safranin staining, and confocal scanning laser microscopy. Results: ASD and A. fumigatus significantly enhanced the production of IL-6 and IL-8 from nasal epithelial cells. By coculturing A. fumigatus with ASD, the dry weight and safranin staining of the fungal biofilms significantly increased in a time-dependent manner. However, the increased level of crystal violet and concanavalin A stain decreased after 72 h of incubation. Conclusions: ASD and A. fumigatus induced the production of inflammatory chemical mediators from nasal epithelial cells. The exposure of A. fumigatus to ASD enhanced the formation of biofilms. The coexistence of ASD and A. fumigatus may increase the development of fungal biofilms and fungal inflammatory diseases in the sinonasal mucosa.
Aspergillus Enhances Eosinophil and Neutrophil Extracellular DNA Trap Formation in Chronic Rhinosinusitis
Chronic rhinosinusitis (CRS) is characterized by inflammatory cell infiltration in the sinonasal mucosa. Eosinophil and neutrophil extracellular traps (EETs and NETs, respectively) are prominently found in CRS. This study aimed to investigate the effect of airborne fungi, Alternaria alternata and Aspergillus fumigatus, on EET and NET formation. Nasal epithelial cells, eosinophils, and neutrophils were isolated from eosinophilic CRS (ECRS), non-ECRS (NECRS), and healthy control. We determined eosinophil and neutrophil transepithelial migration after fungal treatment. We then determined the release of EETs and NETs by fungi using Sytox Green staining and determined the role of reactive oxygen species (ROS) using ROS inhibitors. We identified more abundant EETs and NETs in ECRS than in NECRS. A. alternata and A. fumigatus enhanced eosinophil and neutrophil transepithelial migration. A. fumigatus strongly induced EET and NET formation in CRS and, simultaneously, suppressed fungal metabolic activity. EET formation in CRS is associated with nicotinamide adenine dinucleotide phosphate (NADPH)–oxidase and NET formation with NADPH–oxidase and mitochondrial ROS. A. fumigatus, but not A. alternata, induced EET and NET formation, and peripheral blood eosinophils and neutrophils exhibited different immune responses against A. fumigatus following the inflammatory status of the host. Aspergillus-fumigatus-induced EET and NET formation plays a crucial role in CRS pathogenesis.
Immunomodulative Effects of Chamaecyparis obtusa Essential Oil in Mouse Model of Allergic Rhinitis
The present study aims to investigate the immunomodulatory effects of essential oil from Chamaecyparis obtusa (EOCO) in an ovalbumin (OVA)-induced allergic rhinitis (AR) mouse model. BALB/c mice were intraperitoneally sensitized and stimulated with OVA. From day 22 to 35, 0.01% and 0.1% ECOC was intranasally administered 1 h before OVA stimulation. Nasal symptoms, as well as serum total and OVA-specific immunoglobulin (Ig) E levels, were measured. Interleukin (IL)-4, IL-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α levels in nasal lavage fluid (NLF) and their production by activated splenocytes were measured. Histological changes in the sinonasal mucosa were evaluated through hematoxylin and eosin and periodic acid-Schiff staining procedure. Th cytokines and their transcription factor mRNA expressions were determined using reverse-transcription polymerase chain reaction. Intranasal EOCO administration significantly suppressed allergic symptoms, OVA-specific IgE level, sinonasal mucosal inflammatory cell infiltration, and mucus-producing periodic acid-Schiff (PAS) positive cell count. EOCO also significantly inhibited IL-4, IL-10, and TNF-α levels in NLF and activated splenocytes. Th2 and Treg related cytokines and their transcription factors in sinonasal mucosa were significantly suppressed through intransal EOCO instillation. In conclusion, repetitive EOCO intranasal instillation showed anti-inflammatory and anti-allergic effects by suppressing nasal symptoms and inhibiting the production and expression of inflammatory mediators in the OVA-induced AR mouse model.
Lidocaine-Based Derivatives for the Treatment of Staphylococcal Enterotoxin B-Induced Chronic Rhinosinusitis
Lidocaine exhibited anti-inflammatory and immunomodulatory properties. This study aimed to investigate the anti-inflammatory effects of the lidocaine-derived analogs, EI137 and EI341, in a Staphylococcal enterotoxin B (SEB)-induced chronic rhinosinusitis (CRS). A CRS model was established using BALB/c mice via intranasal instillation of SEB. EI137 and EI341 were administered intranasally at 0.5 μg/g and 5 μg/g, respectively. Nasal symptoms and interleukin (IL)-4, IL-10, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α levels in the nasal lavage fluid (NLF) were assessed. The reverse-transcription polymerase chain reaction was used to identify IFN-γ, IL-4, IL-10, and their transcription factors in the sinonasal mucosa. Histological changes were performed to assess inflammatory cell infiltration, epithelial thickness, and mucus-producing cells. SEB induced significant increases in IL-4, IL-10, and TNF-α levels in NLF and sinonasal mucosa, along with marked inflammatory cell infiltration. Intranasal EI137 and EI341 administration significantly reduced Th2 cytokine and its transcription factor, inflammatory cell infiltration, and mucus-producing cell numbers in the sinonasal mucosa. Further, EI137 suppressed Th1 cytokines, whereas EI341 enhanced Th1 responses. Both compounds promoted regulatory T cell responses, as evidenced by increased IL-10 and Foxp3 mRNA expression. EI137 and EI341 demonstrated potent local anti-inflammatory effects in a SEB-induced CRS model by modulating Th2 and Treg responses. EI137 suppressed Th1 inflammation, whereas EI341 enhanced it. These results indicate that EI137 and EI341 are promising topical agents for Th2-dominant inflammatory diseases, with distinct effects on Th1 immune responses.
Development and immunopathological characteristics of an Alternaria-induced chronic rhinosinusitis mouse model
Airborne fungi are associated with upper and lower airway inflammatory diseases. Alternaria is commonly found in nasal secretions and induces the production of chemical mediators from sinonasal mucosa. This study aimed to establish an Alternaria-induced chronic rhinosinusitis (CRS) mouse model and determine the influence of host allergic background on the immunopathological characteristics of CRS. BALB/c mice were used for establishing the CRS model. Alternaria was intranasally instilled for 8 or 16 weeks with or without ovalbumin (OVA) presensitization. Total serum IgE and Alternaria-specific IgE levels were measured by enzyme-linked immunosorbent assay (ELISA). Interleukin (IL)-4, IL-10, interferon (IFN)-[gamma], and tumor necrosis factor (TNF)-[alpha] levels in nasal lavage fluid (NLF) and splenocytes were measured by ELISA and their mRNAs and levels of associated transcription factors in sinonasal mucosa were determined with quantitative reverse-transcriptase polymerase chain reaction (RT-PCR). Hematoxylin-eosin staining and periodic acid-Schiff staining were performed to evaluate histological changes. Total serum IgE was increased in both allergic and non-allergic CRS. IL-4 was strongly expressed in NLF in both allergic and non-allergic CRS at 16 weeks and not only eosinophils but also neutrophils were increased in NLF of non-allergic CRS mice. The levels of Th1, Th2, and Treg cytokines and transcription factor mRNAs were significantly increased in sinonasal mucosa of non-allergic CRS mice. Both inflammatory cell infiltration and goblet cell hyperplasia were increased in CRS mice. Repeated intranasal instillation of Alternaria results in sinonasal inflammation with inflammatory cell infiltration. The sinonasal mucosal immune responses against Alternaria were shown to differ depending on the host allergic background.
Nasal Epithelial Cells Activated with Alternaria and House Dust Mite Induce Not Only Th2 but Also Th1 Immune Responses
Chronic rhinosinusitis (CRS) is a heterogeneous disease characterized by mucosal inflammation. Airborne allergens are associated with upper and lower airway inflammatory disease. We investigated the effects of airborne allergen stimulation in the nasal epithelial cells and their effect on the peripheral blood mononuclear cells’ (PBMCs) Th immune polarization. Interleukin (IL)-10, IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) levels were determined using the enzyme-linked immunosorbent assay (ELISA) in nasal polyp tissues. Cultured primary nasal epithelial cells were stimulated with Alternaria alternata, Aspergillus fumigatus, Dermatophagoides pteronyssinus (DP), and Dermatophagoides farina (DF) for 48 hours. IL-6, IL-25, IL-33, and TSLP production were measured by ELISA, and the nuclear factor-κB (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinase (MAPK) expression were determined by western blot analyses. PBMCs were cultured with nasal epithelial cell-conditioned media (NECM), and IL-5, interferon (IFN)-γ, and tumor necrosis factor (TNF)-α were measured. Innate lymphoid type2 cells (ILC2) were analyzed with flowcytometry. IL-25, IL-33, and TSLP levels were significantly higher in eosinophilic nasal polyps. Alternaria, DP, and DF enhanced IL-33 and TSLP production from the nasal epithelial cells through the NF-κB, AP-1, and MAPK pathway. NECM induced IL-5, IFN-γ, and TNF-α production from PBMCs, without increasing ILC2 expression. Alternaria and house dust mites enhanced the chemical mediator production from nasal epithelial cells and these allergens may induce not only Th2 inflammatory responses but also Th1 inflammatory responses in the nasal mucosa.
Effect of Korean Red Ginseng and Rg3 on Asian Sand Dust-Induced MUC5AC, MUC5B, and MUC8 Expression in Bronchial Epithelial Cells
Korean Red ginseng (KRG), commonly used in traditional medicine, has anti-inflammatory, anti- oxidative, and anti-tumorigenic properties. Asian sand dust (ASD) is known to aggravate upper and lower airway inflammatory responses. BEAS-2B cells were exposed to ASD with or without KRG or ginsenoside Rg3. Mucin 5AC (MUC5AC), MUC5B, and MUC8 mRNA and protein expression levels were determined using quantitative RT-PCR and enzyme-linked immunosorbent assay. Nuclear factor kappa B (NF-κB), activator protein 1, and mitogen-activated protein kinase expression and activity were determined using western blot analysis. ASD induced MUC5AC, MUC5B, and MUC8 mRNA and protein expression in BEAS-2B cells, which was significantly inhibited by KRG and Rg3. Although ASD-induced mucin expression was associated with NF-κB and p38 mitogen-activated protein kinase (MAPK) activity, KRG and Rg3 significantly suppressed only ASD-induced NF-κB expression and activity. KRG and Rg3 inhibited ASD-induced mucin gene expression and protein production from bronchial epithelial cells. These results suggest that KRG and Rg3 have potential for treating mucus-producing airway inflammatory diseases.