Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
10,576
result(s) for
"Song, Jian"
Sort by:
Transarterial chemoembolization with PD-(L)1 inhibitors plus molecular targeted therapies for hepatocellular carcinoma (CHANCE001)
2023
There is considerable potential for integrating transarterial chemoembolization (TACE), programmed death-(ligand)1 (PD-[L]1) inhibitors, and molecular targeted treatments (MTT) in hepatocellular carcinoma (HCC). It is necessary to investigate the therapeutic efficacy and safety of TACE combined with PD-(L)1 inhibitors and MTT in real-world situations. In this nationwide, retrospective, cohort study, 826 HCC patients receiving either TACE plus PD-(L)1 blockades and MTT (combination group, n = 376) or TACE monotherapy (monotherapy group, n = 450) were included from January 2018 to May 2021. The primary endpoint was progression-free survival (PFS) according to modified RECIST. The secondary outcomes included overall survival (OS), objective response rate (ORR), and safety. We performed propensity score matching approaches to reduce bias between two groups. After matching, 228 pairs were included with a predominantly advanced disease population. Median PFS in combination group was 9.5 months (95% confidence interval [CI], 8.4–11.0) versus 8.0 months (95% CI, 6.6–9.5) (adjusted hazard ratio [HR], 0.70,
P
= 0.002). OS and ORR were also significantly higher in combination group (median OS, 19.2 [16.1–27.3] vs. 15.7 months [13.0–20.2]; adjusted HR, 0.63,
P
= 0.001; ORR, 60.1% vs. 32.0%;
P
< 0.001). Grade 3/4 adverse events were observed at a rate of 15.8% and 7.5% in combination and monotherapy groups, respectively. Our results suggest that TACE plus PD-(L)1 blockades and MTT could significantly improve PFS, OS, and ORR versus TACE monotherapy for Chinese patients with predominantly advanced HCC in real-world practice, with an acceptable safety profile.
Journal Article
Multidimensional Poverty in Rural China: Human Capital vs Social Capital
2025
Occupational stratification is the comprehensive division and classification of various occupations undertaken by members of society according to specific standards and methods. Based on China Family Panel Studies data, we use the Alkire–Foster method to calculate the rural multidimensional poverty index and empirically examine the impact of human capital, social capital, and occupational stratification on rural multidimensional poverty reduction. The results show that the improvement of human capital and social capital can affect the occupational stratification of rural household members, thereby promoting the growth of household income and reducing multidimensional poverty in the household; occupational stratification is an intermediator in the poverty reduction effect of human capital and social capital; compared to social capital, human capital has a more substantial impact on occupational stratification and rural multidimensional poverty; human capital has a long-term dynamic impact on household multidimensional poverty. On the other hand, social capital has a short-term impact on household multidimensional poverty. At the same time, occupational stratification has a long-term dynamic impact on household multidimensional poverty and is also a long-term poverty reduction mechanism. We delve into the long-term mechanisms for addressing multidimensional poverty through the lens of occupational stratification. Furthermore, we compare the contributions of social and human capital to occupational stratification and the reduction of multidimensional poverty in Chinese rural areas. This analysis enriches the existing literature on poverty studies.
Journal Article
Systemic immune-inflammation index predicting chemoradiation resistance and poor outcome in patients with stage III non-small cell lung cancer
2017
Background
There is increasing evidence that the existence of systemic inflammation response is correlated with poor prognosis in several solid tumors. The aim of this retrospective study was to investigate the association between systemic immune-inflammation index (SII) and therapy response and overall survival in patients with stage III non-small cell lung cancer (NSCLC). The prognostic values of neutrophil to lymphocyte ratio (NLR), platelet to lymphocyte ratio (PLR), and prognostic nutritional index (PNI) were also evaluated.
Methods
In total, 332 patients with new diagnosis of stage III NSCLC were included in this retrospective analysis. SII was defined as platelet counts × neutrophil counts/lymphocyte counts. Receiver operating characteristic (ROC) curve was used to evaluate the optimal cut-off value for SII, NLR, PLR and PNI. Univariate and multivariate survival analysis were performed to identify the factors correlated with overall survival.
Results
Applying cut-offs of ≥ 660 (SII), ≥ 3.57 (NLR), ≥ 147 (PLR), ≤ 52.95 (PNI), SII ≥ 660 was significantly correlated with worse ECOG PS (< 0.001), higher T stage (< 0.001), advanced clinical stage (
p
= 0.019), and lower response rate (
p
= 0.018). In univariate analysis, SII ≥ 660, NLR ≥ 3.57, PLR ≥ 147, and PNI ≤ 52.95 were significantly associated with worse overall survival (
p
all
< 0.001). Patients with SII ≥ 660 had a median overall survival of 10 months, and patients with SII < 660 showed a median overall survival of 30 months. In multivariate analysis only ECOG PS (HR, 1.744; 95% CI 1.158–2.626;
p
= 0.008), T stage (HR, 1.332; 95% CI 1.032–1.718;
p
= 0.028), N stage (HR, 1.848; 95% CI 1.113–3.068;
p
= 0.018), SII (HR, 2.105; 95% CI 1.481–2.741;
p
< 0.001) and NLR ≥ 3.57 (HR, 1.934; 95% CI 1.448–2.585;
p
< 0.001) were independently correlated with overall survival.
Conclusions
This study demonstrates that the SII is an independent prognostic indicator of poor outcomes for patients with stage III NSCLC and is superior to other inflammation-based factors in terms of prognostic ability.
Journal Article
Association between prospective registration and overall reporting and methodological quality of systematic reviews: a meta-epidemiological study
2018
The aim of this study was to investigate the differences in main characteristics, reporting and methodological quality between prospectively registered and nonregistered systematic reviews.
PubMed was searched to identify systematic reviews of randomized controlled trials published in 2015 in English. After title and abstract screening, potentially relevant reviews were divided into three groups: registered non-Cochrane reviews, Cochrane reviews, and nonregistered reviews. For each group, random number tables were generated in Microsoft Excel, and the first 50 eligible studies from each group were randomly selected. Data of interest from systematic reviews were extracted. Regression analyses were conducted to explore the association between total Revised Assessment of Multiple Systematic Review (R-AMSTAR) or Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) scores and the selected characteristics of systematic reviews.
The conducting and reporting of literature search in registered reviews were superior to nonregistered reviews. Differences in 9 of the 11 R-AMSTAR items were statistically significant between registered and nonregistered reviews. The total R-AMSTAR score of registered reviews was higher than nonregistered reviews [mean difference (MD) = 4.82, 95% confidence interval (CI): 3.70, 5.94]. Sensitivity analysis by excluding the registration-related item presented similar result (MD = 4.34, 95% CI: 3.28, 5.40). Total PRISMA scores of registered reviews were significantly higher than nonregistered reviews (all reviews: MD = 1.47, 95% CI: 0.64-2.30; non-Cochrane reviews: MD = 1.49, 95% CI: 0.56-2.42). However, the difference in the total PRISMA score was no longer statistically significant after excluding the item related to registration (item 5). Regression analyses showed similar results.
Prospective registration may at least indirectly improve the overall methodological quality of systematic reviews, although its impact on the overall reporting quality was not significant.
Journal Article
Uncovering the anticancer mechanism of Compound Kushen Injection against HCC by integrating quantitative analysis, network analysis and experimental validation
2018
Compound Kushen Injection (CKI) is a Traditional Chinese Medicine (TCM) preparation that has been clinically used in China to treat various types of solid tumours. Although several studies have revealed that CKI can inhibit the proliferation of hepatocellular carcinoma (HCC) cell lines, the active compounds, potential targets and pathways involved in these effects have not been systematically investigated. Here, we proposed a novel idea of “main active compound-based network pharmacology” to explore the anti-cancer mechanism of CKI. Our results showed that CKI significantly suppressed the proliferation and migration of SMMC-7721 cells. Four main active compounds of CKI (matrine, oxymatrine, sophoridine and N-methylcytisine) were confirmed by the integration of ultra-performance liquid chromatography/mass spectrometry (UPLC-MS) with cell proliferation assays. The potential targets and pathways involved in the anti-HCC effects of CKI were predicted by a network pharmacology approach, and some of the crucial proteins and pathways were further validated by western blotting and metabolomics approaches. Our results indicated that CKI exerted anti-HCC effects via the key targets MMP2, MYC, CASP3, and REG1A and the key pathways of glycometabolism and amino acid metabolism. These results provide insights into the mechanism of CKI by combining quantitative analysis of components, network pharmacology and experimental validation.
Journal Article
Mesenchymal stem cell-derived extracellular vesicles in skin wound healing: roles, opportunities and challenges
2023
Skin wounds are characterized by injury to the skin due to trauma, tearing, cuts, or contusions. As such injuries are common to all human groups, they may at times represent a serious socioeconomic burden. Currently, increasing numbers of studies have focused on the role of mesenchymal stem cell (MSC)-derived extracellular vesicles (EVs) in skin wound repair. As a cell-free therapy, MSC-derived EVs have shown significant application potential in the field of wound repair as a more stable and safer option than conventional cell therapy. Treatment based on MSC-derived EVs can significantly promote the repair of damaged substructures, including the regeneration of vessels, nerves, and hair follicles. In addition, MSC-derived EVs can inhibit scar formation by affecting angiogenesis-related and antifibrotic pathways in promoting macrophage polarization, wound angiogenesis, cell proliferation, and cell migration, and by inhibiting excessive extracellular matrix production. Additionally, these structures can serve as a scaffold for components used in wound repair, and they can be developed into bioengineered EVs to support trauma repair. Through the formulation of standardized culture, isolation, purification, and drug delivery strategies, exploration of the detailed mechanism of EVs will allow them to be used as clinical treatments for wound repair. In conclusion, MSC-derived EVs-based therapies have important application prospects in wound repair. Here we provide a comprehensive overview of their current status, application potential, and associated drawbacks.
Journal Article
Inhibition of YAP with siRNA prevents cartilage degradation and ameliorates osteoarthritis development
2019
The Hippo/YAP signaling pathway is important for mediating organ size and tissue homeostasis, but its role in osteoarthritis (OA) remains unclear. We aimed to investigate the role of Hippo/YAP signaling pathway in OA development. YAP expression in OA cartilage was assessed by immunohistochemistry, RT-qPCR, and Western blotting. The effects of YAP overexpression or knockdown on gene expression related to chondrocyte hypertrophy induced by IL-1β were examined. The in vivo effects of YAP inhibition were studied. Subchondral bone was analyzed by micro-CT. YAP was increased in mice and human OA articular cartilage and chondrocytes. YAP mRNA expression level was also increased in IL-1β-induced chondrocytes. YAP overexpression resulted in increased expression of catabolic genes in response to IL-1β. Suppression of YAP by siRNA inhibited IL-1β stimulated catabolic genes expression and chondrocytes apoptosis. Intra-articular injection of YAP siRNA ameliorated OA development in mice. Micro-CT results showed the aberrant subchondral bone formation was also reduced. We provided evidence that YAP was upregulated in OA cartilage. Inhibition of YAP using YAP siRNA is a promising way to prevent cartilage degradation in OA.Key messagesYAP was upregulated in human and mice osteoarthritis cartilage and chondrocytes.YAP siRNA decreased IL-1β-induced catabolic gene expression.Intra-articular injection of YAP siRNA ameliorated OA development.Intra-articular injection of YAP siRNA reduced aberrant subchondral bone formation.
Journal Article
A GIS-based tool for probabilistic physical modelling and prediction of landslides: GIS-FORM landslide susceptibility analysis in seismic areas
2022
Landslide is regarded as one of the most prevalent and destroying geological hazards in natural terrain areas. Reliable landslide susceptibility analysis procedures are vital for policymakers to manage the regional-scale landslide risk. In the framework of physically based modelling analysis, the infinite slope model is commonly used to assess the surficial landslide susceptibility with deterministically defined geotechnical and geological parameters. This work aims to develop a user-friendly geographic information system (GIS) extension tool called the GIS-FORM landslide prediction toolbox using the Python programming language to consider the possible uncertainties in the physically based landslide susceptibility analysis in seismic areas. We implement the first-order reliability method (FORM) algorithm to calculate the probability of infinite slope failures. The proposed toolbox can produce some regional hazard distribution maps of different indexes, such as the factor of safety (FoS), reliability index (RI), and failure probability (Pf). Furthermore, the toolbox enables coseismic landslide displacement prediction using either the direct Newmark integration method and/or the empirical formula method. Outputs of the GIS-FORM landslide prediction analysis are verified using published data in the literature. Further, it is also successfully employed for landslide susceptibility analysis of the Ms 7.0 Jiuzhaigou earthquake in Sichuan Province, China. Without loss of generality, the GIS-FORM landslide prediction toolbox can serve for the rapid hazard mapping of earthquake-induced regional landslides where uncertainties in geological and geotechnical parameters should be considered.
Journal Article
Recent advances in near-infrared II imaging technology for biological detection
by
Zhang, Nan-nan
,
Du, Yong-zhong
,
Chen, Min-jiang
in
Biomedical applications
,
Biosensors
,
Biotechnology
2021
Molecular imaging technology enables us to observe the physiological or pathological processes in living tissue at the molecular level to accurately diagnose diseases at an early stage. Optical imaging can be employed to achieve the dynamic monitoring of tissue and pathological processes and has promising applications in biomedicine. The traditional first near-infrared (NIR-I) window (NIR-I, range from 700 to 900 nm) imaging technique has been available for more than two decades and has been extensively utilized in clinical diagnosis, treatment and scientific research. Compared with NIR-I, the second NIR window optical imaging (NIR-II, range from 1000 to 1700 nm) technology has low autofluorescence, a high signal-to-noise ratio, a high tissue penetration depth and a large Stokes shift. Recently, this technology has attracted significant attention and has also become a heavily researched topic in biomedicine. In this study, the optical characteristics of different fluorescence nanoprobes and the latest reports regarding the application of NIR-II nanoprobes in different biological tissues will be described. Furthermore, the existing problems and future application perspectives of NIR-II optical imaging probes will also be discussed.
Journal Article
The potential crosstalk genes and molecular mechanisms between glioblastoma and periodontitis
2024
Despite clinical and epidemiological evidence suggestive of a link between glioblastoma (GBM) and periodontitis (PD), the shared mechanisms of gene regulation remain elusive. In this study, we identify differentially expressed genes (DEGs) that overlap between the GEO datasets GSE4290 [GBM] and GSE10334 [PD]. Functional enrichment analysis was conducted, and key modules were identified using protein–protein interaction (PPI) network and weighted gene co-expression network analysis (WGCNA). The expression levels of CXCR4, LY96, and C3 were found to be significantly elevated in both the test dataset and external validation dataset, making them key crosstalk genes. Additionally, immune cell landscape analysis revealed elevated expression levels of multiple immune cells in GBM and PD compared to controls, with the key crosstalk genes negatively associated with Macrophages M2. FLI1 was identified as a potential key transcription factor (TF) regulating the three key crosstalk genes, with increased expression in the full dataset. These findings contribute to our understanding of the immune and inflammatory aspects of the comorbidity mechanism between GBM and PD.
Journal Article