Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
84 result(s) for "Tarkowská, Danuše"
Sort by:
Plants are Capable of Synthesizing Animal Steroid Hormones
As a result of the findings of scientists working on the biosynthesis and metabolism of steroids in the plant and animal kingdoms over the past five decades, it has become apparent that those compounds that naturally occur in animals can also be found as natural constituents of plants and vice versa, i.e., they have essentially the same fate in the majority of living organisms. This review summarizes the current state of knowledge on the occurrence of animal steroid hormones in the plant kingdom, particularly focusing on progesterone, testosterone, androstadienedione (boldione), androstenedione, and estrogens.
Inhibition of gibberellin accumulation by water deficiency promotes fast and long-term ‘drought avoidance’ responses in tomato
• Plants reduce transpiration to avoid dehydration during drought episodes by stomatal closure and inhibition of canopy growth. Previous studies have suggested that low gibberellin (GA) activity promotes these ‘drought avoidance’ responses. • Using genome editing, molecular, physiological and hormone analyses, we examined if drought regulates GA metabolism in tomato (Solanum lycopersicum) guard cells and leaves, and studied how this affects water loss. • Water deficiency inhibited the expression of the GA biosynthesis genes GA20 oxidase1 (GA20ox1) and GA20ox2 and induced the GA deactivating gene GA2ox7 in guard cells and leaf tissue, resulting in reduced levels of bioactive GAs. These effects were mediated by abscisic acid-dependent and abscisic acid-independent pathways, and by the transcription factor TINY1. The loss of GA2ox7 attenuated stomatal response to water deficiency and during soil dehydration, ga2ox7 plants closed their stomata later, and wilted faster than wild-type (WT) M82 cv. Mutations in GA20ox1 and GA20ox2, had no effect on stomatal closure, but reduced water loss due to the mutants’ smaller canopy areas. • The results suggested that drought-induced GA deactivation in guard cells, contributes to stomatal closure at the early stages of soil dehydration, whereas inhibition of GA synthesis in leaves suppresses canopy growth and restricts transpiration area.
A Fast and Reliable UHPLC–MS/MS-Based Method for Screening Selected Pharmacologically Significant Natural Plant Indole Alkaloids
Many substances of secondary plant metabolism have often attracted the attention of scientists and the public because they have certain beneficial effects on human health, although the reason for their biosynthesis in the plant remains unclear. This is also the case for alkaloids. More than 200 years have passed since the discovery of the first alkaloid (morphine), and several thousand substances of this character have been isolated since then. Most often, alkaloid-rich plants are part of folk medicine with centuries-old traditions. What is particularly important to monitor for these herbal products is the spectrum and concentrations of the present active substances, which decide whether the product has a beneficial or toxic effect on human health. In this work, we present a fast, reliable, and robust method for the extraction, preconcentration, and determination of four selected alkaloids with an indole skeleton, i.e., harmine, harmaline, yohimbine, and ajmalicine, by ultra-high performance liquid chromatography coupled with tandem mass spectrometry. The applicability of the method was demonstrated for tobacco and Tribulus terrestris plant tissue, the seeds of Peganum harmala, and extract from the bark of the African tree Pausinystalia johimbe.
Isoprenoid-derived plant signaling molecules
Cellular organisms use chemical signals for intercellular communication to coordinate their growth, development, and responses to environmental cues. The skeletons of majority of plant signaling molecules, mediators of plant intercellular ‘broadcasting’, are built from C₅ units of isoprene and therefore belong to a huge and diverse group of natural substances called isoprenoids (terpenoids). They fill many important roles in nature. This review summarizes current knowledge of the biosynthesis and biological importance of a group of isoprenoid-derived plant signaling compounds.
Plant Hormonomics
Phytohormones are physiologically important small molecules that play essential roles in intricate signaling networks that regulate diverse processes in plants. We present a method for the simultaneous targeted profiling of 101 phytohormone-related analytes from minute amounts of fresh plant material (less than 20 mg). Rapid and nonselective extraction, fast one-step sample purification, and extremely sensitive ultra-high-performance liquid chromatography-tandem mass spectrometry enable concurrent quantification of the main phytohormone classes: cytokinins, auxins, brassinosteroids, gibberellins, jasmonates, salicylates, and abscisates. We validated this hormonomic approach in salt-stressed and control Arabidopsis (Arabidopsis thaliana) seedlings, quantifying a total of 43 endogenous compounds in both root and shoot samples. Subsequent multivariate statistical data processing and cross-validation with transcriptomic data highlighted the main hormone metabolites involved in plant adaptation to salt stress.
DELAY OF GERMINATION 1 mediates a conserved coat-dormancy mechanism for the temperature- and gibberellin-dependent control of seed germination
Seed germination is an important life-cycle transition because it determines subsequent plant survival and reproductive success. To detect optimal spatiotemporal conditions for germination, seeds act as sophisticated environmental sensors integrating information such as ambient temperature. Here we show that the DELAY OF GERMINATION 1 (DOG1) gene, known for providing dormancy adaptation to distinct environments, determines the optimal temperature for seed germination. By reciprocal gene-swapping experiments between Brassicaceae species we show that the DOG1-mediated dormancy mechanism is conserved. Biomechanical analyses show that this mechanism regulates the material properties of the endosperm, a seed tissue layer acting as germination barrier to control coat dormancy. We found that DOG1 inhibits the expression of gibberellin (GA)-regulated genes encoding cell-wall remodeling proteins in a temperature-dependent manner. Furthermore we demonstrate that DOG1 causes temperature-dependent alterations in the seed GA metabolism. These alterations in hormone metabolism are brought about by the temperature-dependent differential expression of genes encoding key enzymes of the GA biosynthetic pathway. These effects of DOG1 lead to a temperature-dependent control of endosperm weakening and determine the optimal temperature for germination. The conserved DOG1-mediated coat-dormancy mechanism provides a highly adaptable temperature-sensing mechanism to control the timing of germination.
Analysis of plant growth-promoting properties of Bacillus amyloliquefaciens UCMB5113 using Arabidopsis thaliana as host plant
Root architecture plays a crucial role for plants to ensure uptake of water, minerals and nutrients and to provide anchorage in the soil. The root is a dynamic structure with plastic growth and branching depending on the continuous integration of internal and environmental factors. The rhizosphere contains a complex microbiota, where some microbes can colonize plant roots and support growth and stress tolerance. Here, we report that the rhizobacterium Bacillus amyloliquefaciens subsp. plantarum UCMB5113 stimulated the growth of Arabidopsis thaliana Col-0 by increased lateral root outgrowth and elongation and roothair formation, although primary root elongation was inhibited. In addition, the growth of the above ground tissues was stimulated by UCMB5113. Specific hormone reporter gene lines were tested which suggested a role for at least auxin and cytokinin signaling during rhizobacterial modulation of Arabidopsis root architecture. UCMB5113 produced cytokinins and indole-3-acetic acid, and the formation of the latter was stimulated by root exudates and tryptophan. The plant growth promotion effect by UCMB5113 did not appear to depend on jasmonic acid in contrast to the disease suppression effect in plants. UCMB5113 exudates inhibited primary root growth, while a semi-purified lipopeptide fraction did not and resulted in the overall growth promotion indicating an interplay of many different bacterial compounds that affect the root growth of the host plant. This study illustrates that beneficial microbes interact with plants in root development via classic and novel signals.
Abscisic acid, gibberellins and brassinosteroids in Kelpak®, a commercial seaweed extract made from Ecklonia maxima
The seaweed extract Kelpak® made from the kelp Ecklonia maxima is registered as a biostimulant for use in agriculture. It elicits many beneficial responses including improved root and shoot growth, higher yields and greater resistance to abiotic and biotic stresses. Previously, cytokinins, auxins and polyamines were identified in Kelpak®. The aim of the present study was to quantify other groups of plant growth regulators (PGRs)—abscisic acid (ABA), gibberellins (GAs) and brassinosteroids—that may be present in E. maxima and Kelpak®. Kelpak® samples harvested between 2008 and 2010 and stored for up to 26 months were analysed using ultra performance liquid chromatography tandem mass spectrometry. ABA levels were below the limits of detection in E. maxima but were detected in low concentrations in Kelpak®, ranging from 0.31 to 20.70 pg mL⁻¹ Kelpak®. Eighteen GAs were found in E. maxima and Kelpak® with concentrations from 187.54 to 565.96 pg mL⁻¹ Kelpak®. The biologically active GAs (GA₁, GA₃, GA₄, GA₅, GA₆ and GA₇) comprised less than 3 % in Kelpak®. Although GA₁₃ (a final product in the metabolic pathway) was present in low concentrations in E. maxima, very high concentrations were present in Kelpak®. The brassinosteroids brassinolide (BL) and castasterone (CS) were identified in E. maxima and Kelpak®. Concentrations varied with harvest and storage time, ranging from 384.72 to 793.23 pg BL mL⁻¹ Kelpak® and 62.84 to 567.51 pg CS mL⁻¹ Kelpak®. It is likely that this cocktail of natural PGRs present in Kelpak® may act individually or in concert and thus contribute to the numerous favourable physiological responses elicited by Kelpak® application to plants.
Early Brassica Crops Responses to Salinity Stress: A Comparative Analysis Between Chinese Cabbage, White Cabbage, and Kale
Soil salinity is severely affecting crop productivity in many countries, particularly in the Mediterranean area. To evaluate early plant responses to increased salinity and characterize tolerance markers, three important crops - Chinese cabbage ( ssp. ), white cabbage ( var. ) and kale ( var. ) were subjected to short-term (24 h) salt stress by exposing them to NaCl at concentrations of 50, 100, or 200 mM. Physiological (root growth, photosynthetic performance parameters, and Na /K ratio) and biochemical parameters (proline content and lipid peroxidation as indicated by malondialdehyde, MDA, levels) in the plants' roots and leaves were then measured. Photosynthetic parameters such as the total performance index PI (describing the overall efficiency of PSI, PSII and the intersystem electron transport chain) appeared to be the most salinity-sensitive parameter and informative stress marker. This parameter was decreased more strongly in Chinese cabbage than in white cabbage and kale. It indicated that salinity reduced the capacity of the photosynthetic system for efficient energy conversion, particularly in Chinese cabbage. In parallel with the photosynthetic impairments, the Na /K ratio was highest in Chinese cabbage leaves and lowest in kale leaves while kale root is able to keep high Na /K ratio without a significant increase in MDA. Thus Na /K ratio, high in root and low in leaves accompanying with low MDA level is an informative marker of salinity tolerance. The crops' tolerance was positively correlated with levels of the stress hormone abscisic acid (ABA) and negatively correlated with levels of jasmonic acid (JA), and jasmonoyl-L-isoleucine (JA-Ile). Furthermore, salinity induced contrasting changes in levels of the growth-promoting hormones brassinosteroids (BRs). The crop's tolerance was positively correlated with levels of BR precursor typhasterol while negatively with the active BR brassinolide. Principal Component Analysis revealed correlations in observed changes in phytohormones, biochemical, and physiological parameters. Overall, the results show that kale is the most tolerant of the three species and Chinese cabbage the most sensitive to salt stress, and provide holistic indications of the spectrum of tolerance mechanisms involved.
Hormonal crosstalk controls cell death induced by kinetin in roots of Vicia faba ssp. minor seedlings
Studies of vitality/mortality of cortex cells, as well as of the concentrations of ethylene (ETH), gibberellins (GAs), indolic compounds/auxins (ICs/AUXs) and cytokinins (CKs), were undertaken to explain the hormonal background of kinetin (Kin)-regulated cell death (RCD), which is induced in the cortex of the apical parts of roots of faba bean ( Vicia faba ssp. minor ) seedlings. Quantification was carried out with fluorescence microscopy, ETH sensors, spectrophotometry and ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC‒MS/MS). The results indicated that Kin was metabolized to the transport form, i.e., kinetin-9-glucoside (Kin9G) and kinetin riboside (KinR). KinR was then converted to cis -zeatin ( c Z) in apical parts of roots with meristems, to cis -zeatin riboside ( c ZR) in apical parts of roots without meristems and finally to cis -zeatin riboside 5’-monophosphate ( c ZR5’MP), which is indicated to be a ligand of cytokinin-dependent receptors inducing CD. The process may be enhanced by an increase in the amount of dihydrozeatin riboside (DHZR) as a byproduct of the pathway of zeatin metabolism. It seems that crosstalk of ETH, ICs/AUXs, GAs and CKs with the c ZR5’MP, the cis -zeatin-dependent pathway, but not the trans -zeatin-dependent pathway, is responsible for Kin-RCD, indicating that the process is very specific and offers a useful model for studies of CD hallmarks in plants.